62 research outputs found

    Impact of spatial resolution on the modelling of the Greenland ice sheet surface mass balance between 1990–2010, using the regional climate model MAR

    Get PDF
    With the aim to force an ice dynamical model, the Greenland ice sheet (GrIS) surface mass balance (SMB) was modelled at different spatial resolutions (15–50 km) for the period 1990–2010, using the regional climate model MAR (Modèle Atmosphérique Régional) forced by the ERA-INTERIM reanalysis. This comparison revealed that (i) the inter-annual variability of the SMB components is consistent within the different spatial resolutions investigated, (ii) the MAR model simulates heavier precipitation on average over the GrIS with decreasing spatial resolution, and (iii) the SMB components (except precipitation) can be derived from a simulation at lower resolution with an “intelligent” interpolation. This interpolation can also be used to approximate the SMB components over another topography/ice sheet mask of the GrIS. These results are important for the forcing of an ice dynamical model needed to enable future projections of the GrIS contribution to sea level rise over the coming centuries

    Impact of the spatial resolution of the Greenland ice sheet surface mass balance modelling using the regional climate model MAR with the aim to force an ice sheet model

    Get PDF
    In this work, we have modelled at different spatial resolutions (10, 15, 20... up to 50km) the Greenland ice sheet (GrIS) surface mass balance (SMB) over the 1991-2010 period by using the regional climate model MAR (Modèle Atmosphérique Régional), validated for the GrIS at 25km resolution and forced every 6 hours by the ERA-INTERIM reanalysis. As part of the ICE2SEA project, the 25km-resolution SMB outputs of the MAR model are used as forcing fields for ice sheet models, in order to produce future projections of the GrIS contribution to sea-level rise over the next 200 years.Although the current spatial resolution of the MAR model (25km) is much higher than the general circulation models (GCM) resolution (150-300km), the ice sheet models often run at a higher resolution (typically 5-10km). Nevertheless, such higher-resolution runs of the MAR model on the same integration domain generate a significant additional computing time and are not doable until now. Moreover, conventional linear interpolations of the SMB outputs onto a higher-resolution grid, generally induce biases because ice sheet masks at different spatial resolutions do not match and the SMB is a very complex function of the spatial resolution/topography. Therefore, enhanced methods of spatial interpolation are needed for using the 25km MAR SMB outputs into the ice sheet models in the framework of the ICE2SEA project.The SMB outputs provided by the 15, 20, . . . km-resolution MAR runs are interpolated onto the 10km MAR grid and compared with the SMB outputs coming from the 10km MAR runs. Several “intelligent” SMB interpolations are tested here for improving the comparison with the 10km MAR results. This work aims to assess the lack of accuracy when interpolating SMB outputs from the MAR model onto a higher-resolution grid, compared to results of MAR running at this higher resolution. We determine also which maximal resolution is required to force with reliability ice sheet models instead of using SMB outputs coming directly from very high resolution runs, taking into account the significant additional computing time needed for such simulations

    Geometric parameters influence on Piano Key Weir hydraulic performances

    Get PDF
    The Piano Key Weir is a recent evolution of the traditional labyrinth weir. Thanks to a reduced foot print, this nonlinear weir can be placed on the top of gravity dams. The Piano Key Weir geometry involves a large number of geometric parameters. Several experimental studies have been carried out to investigate the main geometric parameters influencing the weir hydraulic efficiency and to define their optimal value. In this paper, the experimental data gathered at the University of Liege are re-examined to show how the weir height, the keys widths and the overhangs positions influence, for a given crest length magnification ratio, the weir discharge capacity. The theoretical rating curve of a standard linear weir is considered for comparison. The analysis highlights that the keys widths and overhangs lengths ratios influence significantly the Piano Key Weir efficiency, but less than the weir height. Considering the above mentioned results, a cost efficient design proposed in the literature is also proved to be close to the hydraulic optimum

    prediction of mean and turbulent kinetic energy in rectangular shallow reservoirs

    Get PDF
    AbstractShallow rectangular reservoirs are common structures in urban hydraulics and river engineering. Despite their simple geometries, complex symmetric and asymmetric flow fields develop in such reservoirs, depending on their expansion ratio and length-to-width ratio. The original contribution of this study is the analysis of the kinetic energy content of the mean flow, based on UVP velocity measurements carried throughout the reservoir in eleven different geometric configurations. A new relationship is derived between the specific mean kinetic energy and the reservoir shape factor. For most considered geometric configurations, leading to four different flow patterns, the experimentally observed flow fields and mean kinetic energy contents are successfully reproduced by an operational numerical model based on the depth-averaged flow equations and a two-length-scale k- turbulence closure. The analysis also highlights the better performance of this depth-averaged k- model compared to an algebraic turbu..

    Physical Modeling of an Aerating Stepped Spillway

    Get PDF
    To mitigate the negative effects on the water quality in the downstream river of a projected large dam, and in particular to increase the dissolved oxygen concentration during low flow periods within the first 10 years of dam operation, an aerating weir has been designed and tested on a physical model at the Laboratory of Engineering Hydraulics (HECE) of the Liege University. The design of the structure has been done considering data from the literature. The selected solution is a 3 m high stepped spillway designed to operate in nappe flow conditions within the range of design discharges (25 – 100 m³/s). To validate the design, a physical model representing a section of the weir at a 1:1 scale has been built and operated in the laboratory. Chemical dissolved oxygen removal technique has been applied upstream of the model to be able to measure the weir aerating efficiency. The physical model results show that the proposed structure is able to maintain, in the range of discharge in the river from 25 to 100 m³/s, a minimum 5 mg/l oxygen concentration downstream, whatever the upstream oxygen concentration. The paper presents the design process of the weir, the scale model features and the results of the validation tests on the physical model. The prototype construction will take place in 2017 and the water quality will be monitored

    Comparison between different Regional Climate Models applied to the present climate (1995-2005) of Greenland

    Get PDF
    In the context of climate change, the Greenland Ice Sheet (GrIS) plays an important role in sea level variation and oceanic thermohaline circulation changes. Unfortunately, Global Climate Models do not illustrate enough the characteristics of Greenland. To solve that, specific RCMs have been developed to take into account the features of polar regions.In this project, we compare three RCMs : the MAR model, the RACMO model and the Weather Research and Forecasting (WRF) model. WRF is an open source model developed by the Mesoscale and Microscale Meteorology Division of NCAR. WRF has been modified for polar regions by the Ohio State University. The key modifications are changes of surface energy balance and heat transfer, and an implementation of sea ice thickness, snow thickness and seasonally-varying sea ice albedo in the surface module (Noah LSM). We use here the standard WRF (version 3.2.1) and its polar optimization (called polar WRF). The MAR version tuned for the GrIS and coupled with a 1D surface scheme called SISVAT (for Soil Ice Snow Vegetation Atmosphere Transfer) is compared here. The version of RACMO is a specific version for the Greenland climate, RACMO2/GR. This model contains a special surface module for snow-ice treatment and other modifications concerning, for example, the surface turbulence heat flux or the surface roughness.The comparison is made on a domain centered on Greenland at a 25-km horizontal resolution over the 1995-2005 period when AutomaticWeather Station (AWS) measurements are available from the Greenland Climate NETwork (GC-NET). Statistics (mean, bias, RMSE, correlation coefficient) are calculated for the near-surface temperature, surface pressure, 10m-wind speed and specific humidity for winter (October to April) and summer (May to September). In addition, the modeled snowfall are evaluated with ice core-based snow accumulation climatologies.Comparison shows a significant improvement from RCMs compared to the reanalyses (NCEP2 and ERAINTERIM) in respect to the AWS measurements. RACMO and MAR seem to compare better with observations than WRF. However, we note a significant improvement between WRF and polarWRF
    corecore