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ABSTRACT: Shallow rectangular reservoirs are common structures in urban hydraulics and river engineering. 

Despite their simple geometries, complex symmetric and asymmetric flow fields develop in such reservoirs, 

depending on their expansion ratio and length-to-width ratio. The original contribution of this study is the analysis of 

the kinetic energy content of the mean flow, based on UVP velocity measurements carried out throughout the 

reservoir in eleven different geometric configurations. A new relationship is derived between the specific mean 

kinetic energy and the reservoir shape factor. For most considered geometric configurations, leading to four different 

flow patterns, the experimentally observed flow fields and mean kinetic energy contents are successfully reproduced 

by an operational numerical model based on the depth-averaged flow equations and a two-length-scale k- 

turbulence closure. The analysis also highlights the better performance of this depth-averaged k- model compared 

to an algebraic turbulence model. Finally, the turbulent kinetic energy in the reservoir is derived from the 

experimental measurements and the corresponding numerical predictions based on the k- model agree satisfactorily 

in the main jet but not in the recirculation zones. 

 
Keywords: shallow reservoir, turbulent kinetic energy, UVP measurements, flow fields 

 

1. INTRODUCTION 

Rectangular shallow reservoirs are structures 

commonly used in urban hydraulics and river 

engineering. The capacity of these reservoirs 

varies from a few hundred cubic meters for small 

urban drainage structures to up to millions of 

cubic meters for large fluvial schemes. They may 

serve either as retention basins to protect against 

flooding or as settling basins to trap polluted or 

sediment material (e.g., Chau and Jiang, 2004; 

Wu and Chau, 2006). In the former case, 

deposition should be minimized, while it must be 

maximized in the latter case. Therefore, 

predicting the amount and location of deposits is 

essential, both for the design and the optimal 

operation of such reservoirs. The geometric 

configuration of rectangular shallow reservoirs 

may also be regarded as a useful idealization of 

more complex situations, such as river-floodplain 

systems (Chu et al., 2004) or applications in 

different fields of chemical, civil and 

environmental engineering (Goula et al., 2008; 

Lee et al., 2013; Ng and Chau, 2014). 

 

Dufresne et al. (2009; 2010a) showed that the 

pattern of sediment deposits highly depends on 

the complex flow fields developing in such 

reservoirs, as highlighted by recent experimental 

research (Camnasio et al., 2011; Camnasio et al., 

2013; Dewals et al., 2008; Dufresne et al., 2012). 

Besides a symmetric flow with a central jet 

(patterns S0 and S1), several asymmetric flow 

patterns were identified, despite of the hydraulic 

and geometric symmetry of the experimental 

setups (Fig. 1). In particular, the observed flow 

patterns are characterized by one or two 

reattachment points (respectively, A1 and A2 

patterns). 

A typology of turbulent flow patterns in shallow 

rectangular reservoirs was given by Dufresne et 

al. (2010b) as a function of the non-dimensional 

length of the reservoir L/B and its expansion 

ratio B/b, where L is the reservoir length, B the 

lateral expansion and b the width of the channels 

at the outlet and inlet of the reservoir. It was 

shown that the transition between symmetric and 

asymmetric flow patterns is controlled by the 

shape factor S=L/B
0.6

/b
0.4

. 
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Fig. 1 Main flow patterns observed in shallow 

rectangular reservoirs: the flow shows zero, 

one or two reattachment points () depending 

on the reservoir geometry (Adapted from 

Dufresne et al. (2012)). 

 

The experimentally observed flow patterns were 

reproduced by numerical simulations either based 

on the Reynolds-Averaged Navier-Stokes 

equations (Dufresne et al., 2009) or using more 

operational models based on the shallow water 

equations (Dewals et al., 2008; Liu et al., 2010; 

Dufresne et al., 2011). In particular, Dewals et al. 

(2008) presented numerical simulations based on 

a finite volume model including a two-length-

scale depth-averaged k-ɛ turbulence closure. Peng 

et al. (2011) used a Lattice Boltzmann model with 

turbulence modelling. 

Dufresne (2010a) showed that the trapping 

efficiency of shallow rectangular reservoirs rises 

abruptly when the flow pattern changes from 

symmetric (S0 or S1) to asymmetric (A1 or A2) 

as the geometry of the reservoir is varied and the 

shape factor S exceeds a threshold value. In this 

paper, we investigate for the first time the 

influence of this shape factor S on the mean 

kinetic energy content of the flow. In particular, 

combining experimental data of Camnasio et al. 

(2011) and new numerical simulations, the 

authors have developed a distinct relationship 

between the logarithm of this shape factor and the 

specific mean kinetic energy content of the 

reservoir. We also show that the depth-averaged 

k-ɛ turbulence model used by Dewals et al. (2008) 

performs well at predicting the specific mean 

kinetic energy content of the flow in eleven 

different geometric configurations. 

Next, we present measurements of turbulent 

kinetic energy for the same range of reservoir 

geometries and, using the depth-averaged k-ɛ 

model, we assess the ability of the numerical 

model to simulate the distribution of turbulent 

kinetic energy throughout the basin. This is of 

paramount importance to predict diffusion of 

suspended load and therefore location of sediment 

deposits. So far, existing literature on flow in 

rectangular shallow reservoirs provide neither 

measurements of turbulent kinetic energy nor 

corresponding numerical simulations. 

Dewals et al. (2008) used two different turbulence 

closures: either an algebraic model or a two-

length-scale depth-averaged k-ɛ model (e.g., 

Dufresne et al., 2011). However, comparisons 

between these turbulence closures for predicting 

flow in rectangular shallow reservoirs have 

remained limited and focused solely on the A1 

flow pattern (Dewals et al., 2008). Therefore, we 

also discuss here a comparison of the 

performance of the algebraic closure and the k-ɛ 

model for all flow patterns observed 

experimentally. 

 

 

Fig. 2 Sketch of the experimental reservoir and 

definition of main geometric notations. 

2. LABORATORY EXPERIMENTS 

2.1  Experimental setup 
 
Experiments have been carried out in the same 

facility as described by Dewals et al. (2008) and 

Camnasio et al. (2011). It consists in a rectangular 

reservoir of adjustable length L and width B. 

Their maximum values are, respectively, 6m and 

4m (Fig. 2). The maximum water depth in the 

reservoir is 0.3 m. The horizontal bottom of the 

reservoir is smooth and made of polyvinyl 

chloride (PVC). The inlet and outlet of the 

reservoir consist of two horizontal free-surface 

rectangular channels, with a constant width 

b=0.25m and a length equal to 1m. They are 

located along the centreline of the reservoir, on 

two opposite faces of the reservoir (upstream and 

downstream). Movable PVC walls enable changes 

in the length L and the width B of the reservoir, in 
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order to test different length-to-width ratios L/B 

and expansion ratios ΔB/b. 

In the experiments presented here, the discharge 

Q is kept constant at the value Q=7 l/s. By means 

of a tailgate located at the downstream end of the 

outlet channel, the water depth h in the reservoir 

is also maintained constant, at the value h=0.2m. 

At the reservoir inlet, these values correspond to a 

Reynolds number Rein=4Vinh/ν=112,000 and a 

Froude number Frin=Vin/(gh)
0.5

=0.1, where Vin is 

the average velocity in the inlet channel, g the 

gravity acceleration and ν the kinematic viscosity. 

 

 

Fig. 3 Setup of eight UVP devices to enable two-

component velocity measurements at sixteen 

different points in the flow (○). 

 

2.2  Velocity measurements 
 

Velocity measurements have been performed 

using eight ultrasound velocity profilers (UVP) 

manufactured by Metflow (Camnasio et al., 

2011). Each UVP device measures the flow 

velocity in one direction along a profile aligned 

with the instrument axis. 

As depicted in Fig. 3, the UVP devices were 

arranged along two adjacent sides of a horizontal 

square grid of 1m by 1m, enabling the 

measurement of the two horizontal velocity 

components in the sixteen points formed by the 

intersections of the velocity profiles measured by 

each UVP device. The distance between these 

points was about 21cm. This square grid could be 

moved all over the reservoir to obtain the flow 

field throughout the whole reservoir surface. 

A  preliminary  investigation  of the 2D horizontal 

velocity  components  was carried  out at different 

heights z from the bottom (0.01, 0.06, 0.11 and 

0.18m)  and  at several  locations  in the reservoir, 

from   which   a   mean   velocity profile along the 

depth could be deduced. As a result, the 

subsequent velocity measurements have been 

performed by setting the UVP devices at a height 

z=0.4h=0.08m in order to obtain a representative 

value of the depth-averaged velocity. 

 

2.3  Experimental tests 
 

Experiments were carried out in the following 

way: water was circulated in the system until 

water depth and discharge reached a steady state; 

then, the grid formed by the UVP probes was 

placed at its first position in the reservoir and the 

acquisition of velocity data was started. After the 

measurements, the grid was moved in the next 

position in the reservoir, in order to cover 

progressively the entire reservoir surface. 

Eleven reservoir geometries have been 

considered, as detailed in Table 1. For a fixed 

aspect ratio ΔB/b = 7.5, tests 1 to 5 focus on the 

effect of the non-dimensional length of the 

reservoir (L/ΔB = 1.6 to 3.2) on the transition 

between flow patterns S0, S1 and A1. This 

analysis is complemented by tests 6 to 11 for non-

dimensional lengths up to 34.3, but with 

expansion ratios varying between 0.7 and 5.5, due 

to constraints arising from the experimental setup. 

For each geometric configuration, Table 1 also 

provides the shape factor S=L/ΔB
0.6

/b
0.4

 as 

introduced by Dufresne et al. (2010b). 

 

3.   NUMERICAL SIMULATIONS 
 

Numerical simulations of the experimental flow 

configurations have been carried out with the 

finite volume model WOLF 2D of the University 

of Liege. It solves the shallow water equations on 

a Cartesian grid and achieves second-order 

accuracy in space and time (e.g., Erpicum et al., 

2010). The model is briefly presented hereafter, 

while Dewals et al. (2008) as well as Dufresne et 

al. (2011) described in detail the application of 

the computational method for flow in rectangular 

shallow reservoirs. 

 

3.1  Mathematical model 
 

The shallow-water equations are used. They 

correspond to the Reynolds-averaged Navier-

Stokes equations along the x and y directions, 

averaged  along  the  water  depth.  Considering  a  

horizontal bottom, they write as follows (Erpicum 

et al., 2009): 
2 2 1 1

2

xybx xx
hhhu hu huv gh

t x y x x y

 

  

     
      

      

 

(1) 
2 2 1 1

2

by xy yyh hhv huv hv gh

t x y y x y

  

  

     
      

      

(2)
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Table 1 Length L, width B, non-dimensional length L/B, expansion ratio B/b, shape parameter S=L/B
0.6

/b
0.4

 as well 

as observed and simulated flow patterns in the considered geometric configurations. 

 

Test ID L (m) B (m) L / B (-) B / b (-) S (-) 
Flow patterns 

Observed k- model Alg. mod. 

1 6 4 3.2 7.5 7.2 A1 A1 A1 

2 5.8 4 3.1 7.5 6.9 S1 S0 A1 

3 5.3 4 2.8 7.5 6.3 S1 S0 S0 

4 5 4 2.7 7.5 6.0 S1 S0 S0 

5 3 4 1.6 7.5 3.6 S0 S0 S0 

6 4 3 2.9 5.5 5.8 S1 S0 S0 

7 4 2 4.6 3.5 7.5 A1 A1 A1 

8 4 1 10.7 1.5 12.5 A1 A1 A1 

9 6 1 16.0 1.5 18.8 A1 A1 A2 

10 6 0.75 24.0 1 24.0 A2 A2 Plug flow 

11 6 0.6 34.3 0.7 29.7 A2 A2 Plug flow 

 

with t the time, u and v the velocity components 

along the horizontal directions x and yThe x- and 

y-components of the bottom shear stress,bx and 

by, are estimated using Darcy-Weisbach 

formulation:  

2 2

8
 bx f

u u v



     and      

2 2

8
 

by f
v u v




   (3) 

in which the friction coefficient f is given by 

Colebrook formula, assuming a smooth bottom. 

The derivatives of the depth-averaged viscous and 

turbulent stresses xx, xy and yy are expressed 

using Boussinesq’s assumption formulated for a 

depth-averaged flow model (Erpicum et al., 

2009): 

 
2 2

3 2 2

2 2

xy D D Dxx
T T T

hh hu hu hu hv hv hu
k

x y x y x x y y x y


   

                 
                

                 

 (4) 

 
2 2

3 2 2

2 2

yx yy D D D

T T T

h h hv hv hv hu hv hu
k

x y x y y y x x x y

 
   

                 
                

                 

 (5) 

where k’ is the depth-integrated turbulent kinetic 

energy, while , 
3D

T and 
2D

T  refer, respectively, 

to the kinematic viscosity of water, the eddy 

viscosity related to bed-generated turbulence and 

the eddy viscosity related to large-scale transverse 

shear-generated turbulence. From a local 

equilibrium assumption, 
3D

T  is given by: 

3

*

D

T vc hu  , with *u  the bottom friction velocity 

and cv≈0.08 for non-stratified flow of uniform 

density along the depth (Erpicum et al., 2009). 

The two-dimensional large scale eddy viscosity 

,2T D  is evaluated as a function of the depth-

integrated turbulent kinetic energy k’ and its rate 

of dissipation : 
2

,2T D c k  . These 

variables are governed by two additional transport 

equations: 
3 3

,2 ,2

D D

T T

T D T D

k k

k uk vk k h k h

t x y x h x y h y

k k u v
k k P F

x x y y x y h

   

  

 

              
      

         

         
          

        

(6) 

 

3 3

2
,2 ,2

1 3 21

D D

T T

T D T D

u v h h

t x y x h x y h y

c P c F c
x x y y k hk

  

 

       

    

 

          
      

         

      
                  

 (7) 
The terms P and F, representing the production of 

the large scale horizontal turbulence and the effect 

of wall friction are given by the following 

expressions: 

,2T D

uh vh u v uh vh u v
P

x y x y y x y x


             
           

             

(8) 

 2 2

2 2

,2
2 2

2

3
8

T D

hu hv hu hv
u v uv

x y y xf
F k u v

h u v


       
       

         
 
 
 

(9) 

The production term P is directly related to the 

gradients of horizontal velocity components and 

unit discharges, while the term F contributes to 

dissipation of turbulence. The values of the 

constants involved in the above equations are 

given following Erpicum et al. (2009) and 

              Engineering Applications of Computational Fluid Mechanics Vol. 8, No. 4 (2014) 
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Babarutsi and Chu (1998): c=0.09, k=1, =1.3, 

c1=1.44, c2=1.92 and c3=0.8. 

The predictions of the k- turbulence model are 

compared with those obtained with an algebraic 

model based on Elder formula (Fischer et al., 

1979), in which the eddy viscosity is simply 

evaluated as *T hu  . In this model, the 

derivatives of the depth-averaged viscous and 

turbulent stresses are given by: 

   xyxx
T T

hh u v v u
h h

x y x x y y x y


   

             
            

             

(10) 

   yx yy

T T

h h v u v u
h h

x y y y x x x y

 
   

             
            

             

 (11) 

Parameter represents an empirical coefficient, 

which was set here at =1, consistently with 

previous research (Dewals et al., 2008). 

 

3.2  Numerical model 
 

The numerical model handles Cartesian grids, on 

which the equations detailed above are solved 

based on a finite volume scheme. The 

reconstruction of the variables is performed 

linearly, with slope-limitation. Unlike many 

shallow-water models based on Riemann solvers 

(e.g., Lai and Khan 2012), a flux-vector splitting 

(FVS) technique is used for the discretization of 

the advective terms. As shown by Erpicum et al. 

(2010), this FVS is robust, computationally 

efficient and Froude-independent. The diffusive 

and source terms are all evaluated by a centred 

scheme. Since the model is used here to compute 

steady state flows, a dissipative first order 3-step 

Runge-Kutta algorithm was used for the time 

integration.  

The grid spacing used for spatial discretization is 

2.5cm, leading to a total number of 38,800 cells in 

the largest reservoir configuration. A grid 

independence test was presented by Dufresne et 

al. (2011) based on the grid convergence index 

proposed by Roache (1994). 

The time step used in the simulations is of the 

order of 5×10
-3 

seconds, as it is constrained by the 

Courant-Friedrichs-Lewy stability condition. The 

bottom shear stress terms are discretized semi-

implicitly. This enhances the stability of the 

scheme, at no significant extra computational 

cost. 

 

3.3  Boundary and initial conditions 
 

In all simulations, the downstream water depth 

h=0.2m is prescribed as a boundary condition at 

the outlet, while the inlet boundary condition is a 

constant unit discharge hu = 0.028 m²/s, 

corresponding to a total discharge of 7 l/s. As 

detailed by Dewals et al. (2008; 2012), a slight 

transverse disturbance (~1%) was introduced in 

the inflow profile of unit discharge. By acting as a 

seed for asymmetry in the simulation, this 

disturbed boundary condition enables to test the 

stability of the computed flow field with respect 

to small perturbations of the inflow. 

At solid walls, the component of the specific 

discharge normal to the wall is set to zero. As 

regards the discretization of the diffusive terms, 

the gradients of the unknowns in the direction 

parallel to the boundary are set to zero for 

simplicity, while the gradients in the direction 

normal to the boundary are properly evaluated by 

finite difference between the values at the 

boundary and the centre of the adjacent cell. 

To estimate the turbulence variables at solid 

walls, the shear velocity is computed using the 

law of the wall. The corresponding depth-

integrated turbulent kinetic energy and dissipation 

rate are evaluated according to Erpicum et al. 

(2009): 
2hU

k
c





   ;    
2 3h U

d




  (12) 

with U the shear velocity assuming a logarithmic 

velocity profile near the wall,  the von Karman 

constant and d the distance from the wall. At 

inlets, the depth-integrated turbulent kinetic 

energy and its dissipation rate are set as follows 

(Choi and Garcia, 2002): 

4 210k hu  ;   
3 2

10
k

h
   (13) 

All the numerical simulations were repeated 

twice, starting from two different initial 

conditions, corresponding respectively to water at 

rest (i.e., symmetric) and to an asymmetric initial 

flow pattern. In all considered geometric 

configurations, the same steady flow pattern was 

obtained whatever the initial conditions 

(symmetric vs. asymmetric), except in the 

transition zone (i.e., S~6.8) as detailed in section 

4.2. This demonstrates that, the computed final 

steady flow show some dependency on the initial 

conditions in the transition zone only, consistently 

with previous experimental observations 

(Dufresne et al., 2010b; Camnasio et al., 2011). 
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4.   RESULTS 
 
4.1  Flow patterns and velocity profiles 
 

Dufresne et al. (2010b) showed that a symmetric 

flow pattern is observed for S below 6.2 and an 

asymmetric flow pattern for S above 6.8. In-

between those two thresholds, the flow was 

reported to be in a transition zone, because it 

alternately showed a symmetric and an 

asymmetric pattern for repeated tests in the same 

conditions. Dufresne et al. (2010b) made no 

distinction between symmetric flow patterns with 

(S1) and without (S0) reattachment point. 

As detailed in Table 1, the experimentally 

observed flow patterns in the present study agree 

with the predictions of Dufresne et al. (2010b), 

except for tests 2 and 3 which are in or close to 

the transition zone. The later tests lead here to a 

symmetric flow field with one reattachment point 

on each side-wall of the reservoir (S1 pattern). 

The numerical model, based on the depth-

averaged k-ɛ turbulence closure, generally 

succeeds in reproducing the same flow pattern as 

in the experiments, except for the S1 pattern. This 

flow pattern was not reproduced by the numerical 

model, but S0 flow patterns were predicted 

instead. In the tested reservoir configurations, the 

numerical model is thus unable to reproduce the 

two small and slowly recirculating upstream 

eddies, which are observed in the experiments. 

This may result from three-dimensional effects 

which are not incorporated in the numerical 

model. Dewals et al. (2008) also highlighted the 

difficulty of reproducing with a depth-averaged 

model the small slowly-rotating vortices present 

in the upstream of the reservoir, such as in flow 

pattern S1. 

For four reservoir geometries corresponding to 

the four different flow patterns (Fig. 4), 

experimentally measured cross-sectional profiles 

of the longitudinal velocity have been compared 

with numerical results (Fig. 5). The k-ɛ model is 

found to perform relatively well at predicting the 

width of the main jet and the overall velocity 

distribution, particularly for test 5 and, for all 

tests, in the downstream part of the reservoir. 

 

4.2  Mean kinetic energy 
 

To complement local comparisons along cross-

sections,  the  kinetic  energy  in  the reservoir has 

 

 

 

 
 
 

Fig. 4 Flow fields computed in four reservoir geometries using the depth-averaged k- model: (a) Test 5; (b) Test 6; 

(c) Test 7 and (d) Test 10. 
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Fig. 5 Observed and computed cross-sectional velocity profiles for the four reservoir geometries corresponding to 

tests 5, 6, 7 and 10: experimental (●) and simulated with the k- model (——) and with the algebraic turbulence 

model (– – –). 

 

been used as a global indicator to compare 

measured and computed velocity fields. The 

kinetic energy content Etot (m
4
/s

2
) of the reservoir 

is defined as the integral over the reservoir 

surface of the local kinetic energy per unit mass 

associated to the depth-averaged velocity: 

 2 2

tot

1

2
A

E u v dA   (14) 

with A the reservoir surface (m
2
). Integral in Eq. 

(14) can be evaluated numerically either from the 

grid of measured velocity components or from the 

simulated values in each computational cell. To 

avoid the dependence of this indicator on the 

scale of the considered reservoir, the specific 

energy content espec = Etot/A (m
2
/s

2
) has been 

introduced in this study. This specific energy is 

further normalized by a reference specific energy 

eref to lead to a non-dimensional indicator: end = 

espec/eref. The reference specific energy is defined 

as the specific energy corresponding to an 

idealized straight jet in the middle of reservoir: 
2 2

ref 2

1 1

2 2

Q bL Q
e

bh BL bBh

 
  

 
. (15) 

Consequently, the non-dimensional indicator end 

takes values of the order of unity and would equal 

unity in the hypothetical case of a flow pattern 

with zero-velocity in the recirculation zones and 

no spreading of the jet. 

The value of the non-dimensional specific energy 

content end as derived from the velocity 

measurements is shown in Fig. 6 as a function of 

the shape parameter S represented on a 

logarithmic axis. The indicator end monotonously 

decreases as the shape parameter increases, which 

is in qualitative agreement with the higher 

trapping efficiency reported for reservoirs of 

shape parameter higher than the threshold value 

6.8 (Dufresne et al., 2010a). In addition, as shown 

in Fig. 6, the values of end show a distinctive 

linear tendency, which can be represented by the 

following linear relationship between end and the 

logarithm of S: 

nd

cr

1 1
1 ln

2 2

S
e

S

 
   

 
 (16) 

where Scr=6.5 is the value of the shape parameter 

at the center of the transition zone, extending 
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from S=6.2 to S=6.8 as defined by Dufresne et al. 

(2010b). 

Although surprisingly simple, the relationship in 

Eq. (16) could not be predicted nor derived from 

more theoretical considerations. In contrast, it 

confirms once again the important role of the 

shape factor S, based on the definition introduced 

by Dufresne et al. (2010) and, therefore, the 

relevance of using this parameter to characterize 

the influence of the reservoir geometry on the 

flow characteristics. Indeed, it enables to lump all 

relevant geometric parameters (L, B, B, b) into 

one single non-dimensional number, S. Similarly, 

in other recent investigations, Peltier et al. 

(2014a; 2014b) also highlighted the ability of the 

parameter S to reflect the overall influence of the 

reservoir geometry on the occurrence of 

meandering flow in such rectangular shallow 

reservoirs. 

Fig. 6 reveals that two different flow patterns are 

obtained for nearly similar values of S slightly 

higher than Scr, which is consistent with the 

experimental evidence of co-existence of both 

flow patterns S0 and A1 within the transition zone 

(Camnasio et al., 2011; Dufresne et al., 2010b). 

Next, a comparison between the measured 

specific kinetic energy and the numerical 

predictions is given in Fig. 7. The results of the k-

 model agree relatively well with the 

measurements, as the numerical predictions of the 

specific   kinetic   energy  lead  to  a mean relative 

 

error of 10% and the relative errors range in-

between 3% and 20%. 
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Fig. 6 The non-dimensional specific energy content 

derived from velocity measurements varies 

linearly with the logarithm of the shape factor 
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Fig. 7 Compared to the algebraic turbulence model, 

the k-ɛ model leads to more accurate 

predictions of the specific kinetic energy 

content espec. 

 
 

Fig. 8 Comparison between measured (+) and computed (——) turbulent kinetic energy k for the different types of 

flow patterns: (a) L=3 m, B=4 m, pattern S; (b) L=4 m, B=3 m, pattern S; (c) L=4 m, B=2 m, flow pattern A1; 

(d) L=6 m, B=0.75 m, flow pattern A2. The dashed lines locate each cross-section for which comparisons are 

presented and they also indicate the zero level for the corresponding representation of turbulent kinetic energy. 
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4.3  Turbulent kinetic energy 
 

The instantaneous horizontal velocity components 

u and v can be decomposed in the following way: 

u= u +u’ and v= v +v’. u  and v  represent time-

averaged quantities, while u’ and v’ are the 

fluctuating components of velocity due to 

turbulence. Neglecting the small contribution 

which would be given by the vertical velocity 

fluctuating component w’, the turbulent kinetic 

energy per unit mass k can be defined as: 

 2 21

2
k u v   . (17) 

The experimental values of k were compared to 

the values of k’ derived from the k-ɛ numerical 

model. Since this model provides the depth 

integrated value k’ ≈ kh (Erpicum et al., 2009), 

the model output has been simply divided by the 

water height h to obtain the usual form of 

turbulent kinetic energy k. 

In Fig. 8, the experimental and the numerical 

profiles of k for different cross sections of the 

four reservoir configurations are shown. Along 

the main jet, where turbulent kinetic energy takes 

its maximum values (of the order of 10
-4

m
2
/s

2
), 

the experimental values match reasonably well 

the turbulence values resulting from the numerical 

model. On the contrary, the turbulence in the 

recirculation zones, outside of the main jet, is in 

general significantly overestimated by the 

numerical model. 

 

5.   DISCUSSION 
 

Besides the depth-averaged k-ɛ model discussed 

above, a simple algebraic model based on Elder 

formula (see Eqs. (10)-(11)) is another turbulence 

closure which was also used in previous literature 

about rectangular shallow reservoirs, particularly 

for the experimental setup considered here 

(Dewals et al., 2008; 2012; Dufresne et al., 2011). 

Therefore, we compare here the results of this 

algebraic turbulence closure with those of the 

depth-averaged k-ɛ model. 

While the k- ɛ model succeeds in predicting the 

observed flow patterns in most geometric 

configurations, the predictions of the algebraic 

turbulence model show more discrepancies 

compared to the experiments (Table 1). First, the 

transitions between the symmetric flow field S0 

and the asymmetric flow fields A1 and A2 are 

shifted, as highlighted by tests 2 and 9. Second, 

this model fails to reproduce the A2 flow pattern 

observed for high values of the shape parameter 

and predicts instead a plug flow (tests 10 and 11).  

The cross-sectional velocity profiles are better 

reproduced by the depth-averaged k- ɛ model than 

by the algebraic one, which systematically 

overestimates the jet diffusion in the reservoir 

(Fig. 5). In particular, the velocity profiles 

predicted by the algebraic model for the reservoir 

of 6m×0.75m are almost uniform along the 

reservoir width (plug flow) for x≈2m and above, 

in contrast with the A2 flow pattern observed 

experimentally. 

Similarly, for the mean kinetic energy of the flow, 

the predictions of the k-ɛ model agree 

significantly better with the measurements than 

those from the algebraic model (Fig. 7). Indeed, a 

significant positive bias is found in the results of 

the algebraic model, which systematically 

overestimates the measurements except for the 

two configurations in which a plug flow is 

predicted instead of an A2 flow pattern (tests 10 

and 11). The root-mean-square error in the case of 

the algebraic model (7.2×10
-4

 m
2
/s

2
) is more than 

three times higher than for the k-ɛ model (2.1×10
-4 

m
2
/s

2
). This confirms the poorer performance of 

the algebraic model compared to the k-ɛ model, as 

highlighted above by the comparisons of velocity 

fields and cross-sectional profiles. 

 

6.   CONCLUSIONS 
 

This paper presents the results of experimental 

measurements carried out for eleven different 

configurations of rectangular shallow reservoirs. 

The expansion ratio and the length-to-width ratio 

of the reservoir have been varied, whereas the 

hydraulic conditions were kept constant. The flow 

fields were measured experimentally throughout 

the reservoir by means of UVP probes. The 

observed flow patterns are consistent with the 

previous findings by Dufresne et al. (2010b) 

regarding the influence of the reservoir geometry 

on the flow pattern and the role of the shape 

factor S. 

For the first time, the mean kinetic energy content 

of the flow has been analysed as a function of the 

geometry of the reservoir. Based on the 

experimental measurements, a new and simple 

relationship between the shape factor S and the 

non-dimensional specific energy content of the 

flow has been derived: the specific mean kinetic 

energy, normalized by a reference value, is a 

linear function of the logarithm of the reservoir 

shape factor. 

We also compare the experimentally measured 

flow fields to the results of depth-averaged 

numerical simulations based on a two-length-

scale k- model. This model succeeds in 

                    Engineering Applications of Computational Fluid Mechanics Vol. 8, No. 4 (2014) 
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predicting the observed flow fields fairly 

accurately, except for small recirculations in the 

symmetric flow pattern, which are not 

reproduced. The specific mean kinetic energy of 

the entire reservoir has also been used as a global 

indicator to compare measured and simulated 

flow fields. It confirms the ability of the depth-

averaged k- model to reproduce the observed 

mean kinetic energy of the flow. 

Meanwhile, an algebraic turbulence model has 

been tested; but it leads to incorrect flow patterns 

for several geometric configurations and the 

diffusion of the jet in the computed results is 

strongly overestimated compared to the measured 

velocity profiles. 

Finally, the k- model has been shown to provide 

satisfactory predictions of the turbulent kinetic 

energy in the main jet, but it leads to systematic 

overestimations in the recirculation zones, where 

an accurate prediction of turbulent diffusion is 

however essential to predict mixing of suspended 

sediments and location of deposits.  

For future developments, an enhanced calibration 

of the k- model may be necessary to improve 

these computational results, as well as more 

advanced turbulence models such as large eddy 

simulations. The remaining discrepancies may 

also result from the three-dimensional nature of 

the flow in the recirculation zones, where 

secondary currents may be involved. This should 

be further investigated using a 3D flow model 

(e.g., Haun et al., 2011; Chau and Jiang, 2001). 

More advanced experimental techniques for flow 

visualization should also be applied in order to 

verify the 2D or 3D nature of the flow fields, 

particularly as a function of the shape factor. 

Similarly, the overall influence of hydraulic 

conditions on the patterns of velocity, mean 

kinetic energy and turbulent kinetic energy should 

be further investigated. This can be achieved by 

using validated numerical models such as the 

model presented here. In addition to the 

geometry, the main hydraulic parameters, such as 

Reynolds number, Froude number and 

shallowness of the flow, should be varied 

systematically to come up with sufficiently 

generic conclusions. 

Moreover, simulations predicting the amount and 

location of sediment deposits should be 

undertaken based either on standard 

morphodynamic models relying on a continuous 

description of the solid phase or on Lagrangian 

approaches for the solid particles (e.g., Tarpagkou 

and Pantokratoras, 2013). More research is 

needed to successfully reflect in these simulations 

the complex interactions between the mean flow, 

the turbulence and the convective as well as 

diffusive transport of sediments (e.g., Mariotti et 

al., 2013). 

 

NOMENCLATURE 
 
L =  Reservoir length (m) 

B =  Reservoir width (m) 

h =  Water depth (m) 

b =  Width of inlet channel (m) 

Etot = Kinetic energy content of the reservoir 

per unit mass (m
4
/s

2
) 

espec= Specific energy content of the reservoir 

(m
2
/s

2
) 

end= Non-dimensional indicator of the specific 

energy content of the reservoir (-) 

eref=  Reference specific energy content of the 

reservoir (m
2
/s

2
) 

f =  Friction coefficient (-) 

k =  Turbulent kinetic energy per unit mass 

(m
2
/s

2
) 

k’ =  Depth-integrated turbulent kinetic energy 

per unit mass (m
³
/s

2
) 

Frin =  Froude number of the inlet channel (-) 

g =  Gravitational acceleration (m/s
2
) 

Q =  Discharge (m
3
/s) 

Rein = Reynolds number of the inlet channel (-) 

u =  Reynolds-averaged and depth-averaged 

horizontal velocity component in x 

direction (m/s) 

u’ = Fluctuating horizontal velocity 

component in x direction (m/s) 

u  =  Time-averaged velocity component in x 

direction (m/s) 

S =  Shape factor (-) 

Scr =  Shape parameter ate the centre of the 

transition zone (-) 

A =  Reservoir surface (m
2
)  

t =  Time (s) 

u* =  Friction velocity (m/s) 

v =  Reynolds-averaged and depth-averaged 

horizontal velocity component in x 

direction (m/s) 

v’ =  Fluctuating horizontal velocity 

component in y direction (m/s) 

V =  Depth-averaged velocity (m/s) 

Vin =  Average inlet-channel velocity (m/s) 

v =  Instantaneous horizontal velocity 

component in y direction (m/s) 

w’ =  Fluctuating vertical velocity component 

in z direction (m/s) 

x =  Longitudinal coordinate along reservoir 

length (m) 

y =  Transversal coordinate along reservoir 

width (m)  
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z =  Distance along the vertical direction (m) 

 mpirical coefficient of the algebraic 

model (-) 

 =  Eddy viscosity of water (m
2
/s) 

 =  Turbulent stress (N/m²) 

B =  Lateral expansion of the reservoir (m) 

 =  Water density (N/m
3
) 

 =  Rate of dissipation of turbulent kinetic 

energy (m
2
/s

3
) 
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