1,162 research outputs found
Low Reynolds number hydrodynamics of asymmetric, oscillating dumbbell pairs
Active dumbbell suspensions constitute one of the simplest model system for
collective swimming at low Reynolds number. Generalizing recent work, we derive
and analyze stroke-averaged equations of motion that capture the effective
hydrodynamic far-field interaction between two oscillating, asymmetric
dumbbells in three space dimensions. Time-averaged equations of motion, as
those presented in this paper, not only yield a considerable speed-up in
numerical simulations, they may also serve as a starting point when deriving
continuum equations for the macroscopic dynamics of multi-swimmer suspensions.
The specific model discussed here appears to be particularly useful in this
context, since it allows one to investigate how the collective macroscopic
behavior is affected by changes in the microscopic symmetry of individual
swimmers.Comment: 10 pages, to appear in EPJ Special Topic
Stationarity, soft ergodicity, and entropy in relativistic systems
Recent molecular dynamics simulations show that a dilute relativistic gas
equilibrates to a Juettner velocity distribution if ensemble velocities are
measured simultaneously in the observer frame. The analysis of relativistic
Brownian motion processes, on the other hand, implies that stationary
one-particle distributions can differ depending on the underlying
time-parameterizations. Using molecular dynamics simulations, we demonstrate
how this relativistic phenomenon can be understood within a deterministic model
system. We show that, depending on the time-parameterization, one can
distinguish different types of soft ergodicity on the level of the one-particle
distributions. Our analysis further reveals a close connection between time
parameters and entropy in special relativity. A combination of different
time-parameterizations can potentially be useful in simulations that combine
molecular dynamics algorithms with randomized particle creation, annihilation,
or decay processes.Comment: 4 page
Stochastic cycle selection in active flow networks
Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models. Keywords: networks; active transport; stochastic dynamics; topologyNational Science Foundation (U.S.) (Award CBET-1510768
On Existence and Properties of Approximate Pure Nash Equilibria in Bandwidth Allocation Games
In \emph{bandwidth allocation games} (BAGs), the strategy of a player
consists of various demands on different resources. The player's utility is at
most the sum of these demands, provided they are fully satisfied. Every
resource has a limited capacity and if it is exceeded by the total demand, it
has to be split between the players. Since these games generally do not have
pure Nash equilibria, we consider approximate pure Nash equilibria, in which no
player can improve her utility by more than some fixed factor through
unilateral strategy changes. There is a threshold (where
is a parameter that limits the demand of each player on a specific
resource) such that -approximate pure Nash equilibria always exist for
, but not for . We give both
upper and lower bounds on this threshold and show that the
corresponding decision problem is -hard. We also show that the
-approximate price of anarchy for BAGs is . For a restricted
version of the game, where demands of players only differ slightly from each
other (e.g. symmetric games), we show that approximate Nash equilibria can be
reached (and thus also be computed) in polynomial time using the best-response
dynamic. Finally, we show that a broader class of utility-maximization games
(which includes BAGs) converges quickly towards states whose social welfare is
close to the optimum
Relativistic diffusion processes and random walk models
The nonrelativistic standard model for a continuous, one-parameter diffusion
process in position space is the Wiener process. As well-known, the Gaussian
transition probability density function (PDF) of this process is in conflict
with special relativity, as it permits particles to propagate faster than the
speed of light. A frequently considered alternative is provided by the
telegraph equation, whose solutions avoid superluminal propagation speeds but
suffer from singular (non-continuous) diffusion fronts on the light cone, which
are unlikely to exist for massive particles. It is therefore advisable to
explore other alternatives as well. In this paper, a generalized Wiener process
is proposed that is continuous, avoids superluminal propagation, and reduces to
the standard Wiener process in the non-relativistic limit. The corresponding
relativistic diffusion propagator is obtained directly from the nonrelativistic
Wiener propagator, by rewriting the latter in terms of an integral over
actions. The resulting relativistic process is non-Markovian, in accordance
with the known fact that nontrivial continuous, relativistic Markov processes
in position space cannot exist. Hence, the proposed process defines a
consistent relativistic diffusion model for massive particles and provides a
viable alternative to the solutions of the telegraph equation.Comment: v3: final, shortened version to appear in Phys. Rev.
Recommended from our members
GIV/Girdin is a central hub for profibrogenic signalling networks during liver fibrosis.
Progressive liver fibrosis is characterized by the deposition of collagen by activated hepatic stellate cells (HSCs). Activation of HSCs is a multiple receptor-driven process in which profibrotic signals are enhanced and antifibrotic pathways are suppressed. Here we report the discovery of a signalling platform comprising G protein subunit, Gαi and GIV, its guanine exchange factor (GEF), which serves as a central hub within the fibrogenic signalling network initiated by diverse classes of receptors. GIV is expressed in the liver after fibrogenic injury and is required for HSC activation. Once expressed, GIV enhances the profibrotic (PI3K-Akt-FoxO1 and TGFβ-SMAD) and inhibits the antifibrotic (cAMP-PKA-pCREB) pathways to skew the signalling network in favour of fibrosis, all via activation of Gαi. We also provide evidence that GIV may serve as a biomarker for progression of fibrosis after liver injury and a therapeutic target for arresting and/or reversing HSC activation during liver fibrosis
Recommended from our members
A conceptual framework for studying collective reactions to events in location-based social media
Events are a core concept of spatial information, but location-based social media (LBSM) provide information on reactions to events. Individuals have varied degrees of agency in initiating, reacting to or modifying the course of events, and reactions include observations of occurrence, expressions containing sentiment or emotions, or a call to action. Key characteristics of reactions include referent events and information about who reacted, when, where and how. Collective reactions are composed of multiple individual reactions sharing common referents. They can be characterized according to the following dimensions: spatial, temporal, social, thematic and interlinkage. We present a conceptual framework, which allows characterization and comparison of collective reactions. For a thematically well-defined class of event such as storms, we can explore differences and similarities in collective attribution of meaning across space and time. Other events may have very complex spatio-temporal signatures (e.g. political processes such as Brexit or elections), which can be decomposed into series of individual events (e.g. a temporal window around the result of a vote). The purpose of our framework is to explore ways in which collective reactions to events in LBSM can be described and underpin the development of methods for analysing and understanding collective reactions to events
Cratering Soil by Impinging Jets of Gas, with Application to Landing Rockets on Planetary Surfaces
Several physical mechanisms are involved in excavating granular materials beneath a vertical jet of gas. These occur, for example, beneath the exhaust plume of a rocket landing on the soil of the Moon or Mars. A series of experiments and simulations have been performed to provide a detailed view of the complex gas/soil interactions. Measurements have also been taken from the Apollo lunar landing videos and from photographs of the resulting terrain, and these help to demonstrate how the interactions extrapolate into the lunar environment. It is important to understand these processes at a fundamental level to support the ongoing design of higher-fidelity numerical simulations and larger-scale experiments. These are needed to enable future lunar exploration wherein multiple hardware assets will be placed on the Moon within short distances of one another. The high-velocity spray of soil from landing spacecraft must be accurately predicted and controlled lest it erosively damage the surrounding hardware
Effective swimming strategies in low Reynolds number flows
The optimal strategy for a microscopic swimmer to migrate across a linear
shear flow is discussed. The two cases, in which the swimmer is located at
large distance, and in the proximity of a solid wall, are taken into account.
It is shown that migration can be achieved by means of a combination of sailing
through the flow and swimming, where the swimming strokes are induced by the
external flow without need of internal energy sources or external drives. The
structural dynamics required for the swimmer to move in the desired direction
is discussed and two simple models, based respectively on the presence of an
elastic structure, and on an orientation dependent friction, to control the
deformations induced by the external flow, are analyzed. In all cases, the
deformation sequence is a generalization of the tank-treading motion regimes
observed in vesicles in shear flows. Analytic expressions for the migration
velocity as a function of the deformation pattern and amplitude are provided.
The effects of thermal fluctuations on propulsion have been discussed and the
possibility that noise be exploited to overcome the limitations imposed on the
microswimmer by the scallop theorem have been discussed.Comment: 14 pages, 5 figure
- …
