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Active biological flow networks pervade nature and span a wide
range of scales, from arterial blood vessels and bronchial mucus
transport in humans to bacterial flow through porous media or
plasmodial shuttle streaming in slime molds. Despite their ubiquity,
little is known about the self-organization principles that govern flow
statistics in such nonequilibrium networks. Here we connect concepts
from lattice field theory, graph theory, and transition rate theory to
understand how topology controls dynamics in a generic model for
actively driven flow on a network. Our combined theoretical and
numerical analysis identifies symmetry-based rules that make it
possible to classify and predict the selection statistics of complex
flow cycles from the network topology. The conceptual framework
developed here is applicable to a broad class of biological and
nonbiological far-from-equilibrium networks, including actively con-
trolled information flows, and establishes a correspondence between
active flow networks and generalized ice-type models.
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Biological flow networks, such as capillaries (1), leaf veins (2) and
slime molds (3), use an evolved topology or active remodeling

to achieve near-optimal transport when diffusion is ineffectual or
inappropriate (2, 4–7). Even in the absence of explicit matter flux,
living systems often involve flow of information currents along
physical or virtual links between interacting nodes, as in neural
networks (8), biochemical interactions (9), epidemics (10), and
traffic flow (11). The ability to vary the flow topology gives network-
based dynamics a rich phenomenology distinct from that of equiv-
alent continuum models (12). Identical local rules can invoke
dramatically different global dynamical behaviors when node con-
nectivities change from nearest-neighbor interactions to the broad
distributions seen in many networks (13–16). Certain classes of
interacting networks are now sufficiently well understood to be able
to exploit their topology for the control of input–output relations
(17, 18), as exemplified by microfluidic logic gates (19, 20). How-
ever, when matter or information flow through a noisy network is
not merely passive but actively driven by nonequilibrium constitu-
ents (3), as in maze-solving slime molds (6), there are no over-
arching dynamical self-organization principles known. In such an
active network, noise and flow may conspire to produce behavior
radically different from that of a classical forced network. This raises
the general question of how path selection and flow statistics in an
active flow network depend on its interaction topology.
Flow networks can be viewed as approximations of a complex

physical environment, using nodes and links to model intricate
geometric constraints (21–23). These constraints can profoundly
affect matter transport (24–27), particularly for active systems (28–
30) where geometric confinement can enforce highly ordered col-
lective dynamics (20, 31–40). In symmetric geometries like discs
and channels, active flows can often be effectively captured by a
single variable ϕðtÞ, such as angular velocity (32, 41) or net flux
(37), that tends to adopt one of two preferred states ±ϕ0. External
or intrinsic fluctuations can cause ϕðtÞ to diffuse in the vicinity of,
say, −ϕ0, and may occasionally trigger a fast transition to ϕ0 and
vice versa (37, 41). Geometrically coupling together many such
confined units then results in a lattice field theory, reducing a
nonequilibrium active medium to a discrete set of variables obeying
pseudoequilibrium physics, as was recently demonstrated for a

lattice of bacterial vortices (41). In this paper, we generalize this idea
by constructing a generic lattice field model for an incompressible
active medium flowing in an arbitrary network of narrow channels.
Combining concepts from transition rate theory and graph theory,
we show how the competition between incompressibility, noise, and
spontaneous flow can trigger stochastic switching between states
comprising cycles of flowing edges separated by acyclic sets of
nonflowing edges. As a main result, we find that the state transi-
tion rates for individual edges can be related to one another via
the cycle structure of the underlying network, yielding a topolog-
ical heuristic for predicting these rates in arbitrary networks. We
conclude by establishing a mapping between incompressible active
flow networks and generalized ice-type or loop models (42–44).

Model
Lattice ϕ6 Field Theory for Active Flow Networks. Our network is a
set of vertices v∈V connected by edges e∈ E, forming an un-
directed loop-free graph Γ. (We use graph theoretic terminology
throughout, where a loop is a single self-adjacent edge and a cycle is
a closed vertex-disjoint walk.) To describe signed flux, we construct
the directed graph Γ̂ by assigning an arbitrary orientation to each
edge. Now, let ϕe be the flux along edge e, where ϕe > 0 denotes
flow in the direction of the orientation of e in Γ̂ and ϕe < 0 denotes
the opposite. To model typical active matter behavior (31–33, 41),
we assume that fluxes either spontaneously polarize into flow states
ϕe ≈±1, or adopt some other nonflowing mode ϕe ≈ 0. We for-
malize this by imposing a bistable potential V ðϕeÞ=−ð1=4Þϕ4

e +
ð1=6Þϕ6

e on each flux variable. This form, of higher order than in a
typical Landau theory, ensures that incompressible potential min-
ima are polarized flows with every ϕe in the set f−1,0,+1g, rather
than the continuum of fractional flow states that a typical ϕ4 po-
tential would yield (SI Local Potential).
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Incompressibility, appropriate to dense bacterial suspensions or
active liquid crystals, is imposed as follows. The net flux into vertex v isP

e∈EDveϕe, where the discrete negative divergence operator
D= ðDveÞ is the jVj× jEj incidence matrix of Γ̂ such that Dve is −1 if e
is directed out of v,+1 if e is directed into v, and 0 if e is not incident to
v (45). Exact incompressibility corresponds to the constraint DΦ= 0
on the global flow configuration Φ= ðϕeÞ∈RjEj. To allow for small
fluctuations, modeling variability in the microscopic flow structure, we
apply this as a soft constraint via an interaction potential ∝ jDΦj2. The
total energy HðΦÞ of the active flow network then reads

HðΦÞ= λ
X
e∈E

V ðϕeÞ+
1
2
μjDΦj2, [1]

with coupling constants λ and μ. This energy is comparable to that
of a lattice spin field theory, but with interactions given by higher-
dimensional quadratic forms akin to a spin theory on the vertices
of a hypergraph (SI Model).

Network Dynamics. Appealing to recent results showing that bac-
terial vortex lattices obey equilibrium-like physics (41), we impose
that Φ obeys the overdamped Langevin equation

dΦ=−
δH
δΦ

dt+
ffiffiffiffiffiffiffiffiffiffi
2β−1

q
dWt, [2]

withWt an jEj-dimensional vector of uncorrelated Wiener processes
and β the inverse effective temperature. This stochastic dynamical
system has a Boltzmann stationary distribution ∝ e−βH. The compo-
nents of the energy gradient δH=δΦ in Eq. 2 are

�
δH
δΦ

�
e
=−λϕ3

e

�
1−ϕ2

e

�
+ μ

�
DTDΦ

�
e. [3]

DTD is the discrete Laplacian operator on edges, which is of
opposite sign to the continuous Laplacian ∇2 by convention. The
last term in Eq. 3 arises in an otherwise equivalent fashion to how
an elastic energy j∇ψ j2 yields a diffusive term ∇2ψ in a continuous
field theory. On its own, this term damps noncyclic components of
the flow while leaving cyclic components untouched; these compo-
nents’ amplitudes would then undergo independent Brownian walks
were they not constrained by the ϕ6 component of V (SI Model).
We now characterize the behavior of this model on a variety of

forms of underlying graph Γ. For clarity, in addition to our prior
assumption that Γ is loop-free (which simplifies definitions and is
unimportant dynamically because loops decouple; SI Model), we
will focus on connected, simple graphs Γ, although multiple edges
are not excluded per se (Fig. S1). In what follows, we work in the
near-incompressible regime μ � λ before discussing the strictly
incompressible limit μ→∞.

Results
Stochastic Cycle Selection. The combination of energy minimization
and noise leads to stochastic cycle selection (Movies S1 and S2). A
local energy minimum comprises a maximal edge-disjoint union of
unit flux cycles: edge fluxes seek to be at ±1 if possible, subject to
there being zero net flux at every vertex, leading to states where
the nonflowing edges contain no cycles (that is, they form a forest,
or a union of trees). However, noise renders these states only
metastable and induces random switches between them. Fig. 1
A–F depicts flow on the four-vertex complete graph K4 (Fig. 1 A–C)
and the generalized Petersen graph P3,1 (Fig. 1 D–F)—the tetra-
hedron and triangular prism, respectively—where we have in-
tegrated Eq. 2 to yield flux–time traces of each edge (SI Numerical
Methods). The coordinated switching of edges between states of
mean flux at −1, 0, and +1 leads to random transitions between
cyclic states, as illustrated. Note that the more flowing edges a

state has, the lower its energy and therefore the longer-lived that
state will be; thus, in K4, for example, 4-cycles, which are global
minima, persist longer than 3-cycles (Fig. 1 B and C).
A graph possessing an Eulerian cycle—a nonrepeating tour of

all edges starting and ending at one vertex—has global energy
minima with all edges flowing, which exists if and only if all vertices
are of even degree. By contrast, a graph possessing many vertices
of odd degree will have minimum energy states with nonflowing
edges, because edges flowing into and out of such a vertex pair up
to leave an odd number of zero-flow edges. Such “odd” networks
are particularly interesting dynamically, as they are more suscep-
tible to noise-induced state switches than graphs with even degree
vertices (SI Model). For this reason, we specialize from now on to
cubic (or 3-regular) graphs where all vertices have degree three.

Waiting Times and Graph Symmetries. The cycle-swapping behavior
can be quantified by the distribution of the waiting time for an edge
to transition between states in f−1,0,1g. For some edges, de-
pendent on Γ, this distribution will be identical: the interactions in
the energy in Eq. 1 are purely topological, with no reference to an
embedding of Γ, implying that only topological properties—in par-
ticular, graph symmetries—can influence the dynamics. Symmetries
of a graph Γ are encoded in its automorphism group AutðΓÞ, whose
elements permute vertices and edges while preserving incidence and
nonincidence (45). Two edges will then follow identical state distri-
butions if one can be mapped to the other by some element of
AutðΓÞ (SI Automorphic Equivalence); this determines an equivalence
relation on E. In K4, every vertex is connected to every other, so
AutðK4Þ= S4. This means any edge can be permuted to any other—
the graph is edge transitive—so all edges are equivalent and may be
aggregated together. To quantify cycle swapping in K4, we numeri-
cally determined the distribution of the waiting time for an edge to
change its state between −1, 0 and +1 (SI Numerical Methods). The
resultant survival function SðtÞ=PðT > tÞ for the transition waiting
time T of any edge in K4 lengthens with increasing flow polari-
zation strength λ (Fig. 1G), and is well approximated by a two-part
mixture of exponential distributions.

Transition Rate Estimation. Reaction-rate theory explains the form
of the waiting time distribution (46). In a system obeying damped
noisy Hamiltonian dynamics such as ours, a transition from one
local energy minimum to another, respectivelyΦa andΦc, will occur
along a one-dimensional submanifold crossing a saddle point Φb.
The waiting time Tac for this transition to occur is then distributed
approximately exponentially, with rate constant kac = hTaci−1. For a
Hamiltonian that is locally quadratic everywhere, this results in the
generalized Arrhenius law (46)

kac ∝

2
4−νðbÞ1

YN

i=1
νðaÞiYN

i=2
νðbÞi

3
5
1=2

expð−βΔHabÞ, [4]

where ΔHab =HðΦbÞ−HðΦaÞ is the transition energy barrier, and
νðaÞi , νðbÞi are the eigenvalues of the Hessian δ2H=δΦ2 with νðbÞ1 < 0
denoting the unstable eigenvalue at the saddle point. The reverse
transition time Tca obeys another exponential distribution with
equivalent rate kca dependent on the energy barrier ΔHcb. There-
fore, the aggregated distribution of the waiting time T for the
system to change its state between either minimum is a mixture
of two exponential distributions weighted by the equilibrium prob-
abilities of the system to be found in each state. For K4, almost all
transitions should be between 3-cycles and 4-cycles: each Eulerian
subgraph is a 3-cycle or a 4-cycle, with 4-cycles being global min-
ima, and direct transitions between different 4-cycles have a large
enough energy barrier to be comparatively rare. Thus, we expect
K4 to exhibit a two-part mixture with a slow rate k43 from a 4- to a
3-cycle and a fast rate k34 from a 3- to a 4-cycle. Fig. 1 H and I
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shows k43 and k34 for K4 at a range of values of λ, as determined by
maximum likelihood estimation on simulation data. Our nonqua-
dratic potential means these rates are not precisely determined
by Eq. 4, but it does suggest an Arrhenius-type dependence
kac ∝ λ expð−βΔHabÞ. Computing the energy barriers (SI Energy
Barriers) and fitting the proportionality constant for each of k34
and k43 then gives excellent fits to the data, confirming our hy-
pothesis (Fig. 1 H and I).
The complete graph K4 has as much symmetry as is possible on

four vertices. This is unusual; most graphs have multiple classes of
equivalent edges. Although P3,1 (Fig. 1D) is vertex transitive, in
that any vertex can be permuted to any other by its automorphism
group AutðP3,1Þ=D6 ×C2, it is not edge transitive. Instead, the
edges split into two equivalence classes (Fig. 1J, Inset), one con-
taining the two triangles and the other containing the three edges
between them. The waiting times then cluster into two distinct dis-
tributions according to these two classes. However, when more than
two inequivalent minima exist, as they do for P3,1, the potential
transitions rapidly increase according to the combinatorics of the
mutual accessibility between these minima. On P3,1, there is poten-
tially one rate for each pairwise transition between 4-, 5-, and 6-
cycles, leading to a mixture of six or more exponentials for the waiting
time distribution that cannot be reliably statistically distinguished

without large separations of time scales. Instead, we compute the
transition rate k= hTi−1 for each set of equivalent edges. The rates
decay exponentially with λ (Fig. 1J), consistent with transitions
obeying Eq. 4. But why does one set of edges transition more slowly,
on average, than the other?We shall now explore this question for
both highly symmetric and totally asymmetric graphs.

Edge Girth Determines Rate Band Structure. Global symmetries and
local graph structure play distinct roles when determining the
transition rates. Fig. 2A shows the edge state transition rates for
the first eight generalized Petersen graphs Pn,k (47), averaged
within edge equivalence classes (Fig. 2B), at a representative
choice of parameter values that we fix henceforth to focus on the
effects of network topology. Inspection of Fig. 2A reveals that
there are some graphs, such as P6,2, that exhibit distinct classes
obeying near-identical average rates, despite these edges’ differing
global symmetries. These turn out to be edges with similar sizes of
cycles running through them.
When μ � λ, state transitions will conserve flux throughout and

so take the form of adding or subtracting a unit of flux around an
entire Eulerian subgraph Γ′⊂Γ. The energy barrier to such a
transition increases with the number of edges m in Γ′. Indeed, sup-
pose the transition consists of flipping a fraction ρ of the edges in Γ′

A C D

E

F

B

G H

I

J

Fig. 1. Noise and activity cause stochastic cycle selection. (A–C) Flux–time traces (B) for each edge of the complete graph on four vertices, K4. Edge orientations
are as in A. The subdiagrams in C (i–iv) exemplify the flow state in the corresponding regions of the trace. Parameters are λ=2.5, μ= 25, and β−1 = 0.05. (D–F) As in
A–C, but for the generalized Petersen graph P3,1. The same switching behavior results, but now with more cycle states. See also Movie S1. (G) Survival function
SðtÞ=PðT > tÞ of the transition waiting time T for an edge in K4, at regularly spaced values of λ in 2≤ λ≤ 3 with μ= 25 and β−1 = 0.05. Log-scaled vertical; straight
lines imply an exponential distribution at large t. (Inset) SðtÞ at small t with log-scaled vertical, showing nonexponential behavior. (H) Slow and (I) fast edge
transition rates in K4, with parameters as in G. Circles are from fitting T to a mixture of two exponential distributions, and lines show best-fit theoretical rates
k∝ λ expð−βΔHÞwith ΔH calculated for transitions between 3- and 4-cycles (SI Energy Barriers). (J) Transition rate k= hTi−1 for each set of equivalent edges in P3,1,
as per the key, as a function of λ, with μ=25, β−1 = 0.05. Log-scaled vertical shows exponential dependence on λ.
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from ϕ= 0 to ϕ=±1, with the remaining edges necessarily flipping
from ϕ=±1 to ϕ= 0. The transition can then be approximated by a
one-dimensional reaction coordinate s running from 0 to 1, as follows.
Suppose that only edges in Γ′ change during the transition (which is
approximately true for K4; SI Energy Barriers). Using the symmetry of
V, the energy HðsÞ at point s of the transition is given by HðsÞ=
H0 + ρmV ðsÞ+ ð1− ρÞmV ð1− sÞ for H0 a constant dependent on
the states of the edges not in Γ′. The energy barrier is then
ΔH =maxsHðsÞ−Hð0Þ. H is maximized precisely when ρV ðsÞ+
ð1− ρÞV ð1− sÞ is maximized, which is independent ofm. Therefore,
for fixed ρ, ΔH is linear in m. This argument suggests that, because
the transition rate k∝ expð−βΔHÞ, edges contained in small cycles
should have exponentially greater transition rates than those with
longer minimal cycles. Define the e-girth ge to be the minimum
length of all cycles containing edge e, so that the usual graph
girth is the minimum e-girth. Categorizing edge classes in Fig. 2
by ge confirms our hypothesis: the transition rates divide into
near-distinct ranges where larger ge yields rarer transitions, and
equivalence classes with similar rates have identical e-girths.

Asymmetric Networks. Even for graphs with no symmetry, the be-
havior of each edge can still be predicted by a simple local heuristic.
For our purposes, a graph with no symmetry is one possessing only
the identity automorphism, in which case we say it is asymmetric
(45). In this case, edges can have transition rates entirely distinct
from one another. Fig. 3A depicts the mean transition rates for the
edges of 20 asymmetric bridgeless cubic graphs on 21 edges (SI
Numerical Methods), exemplified in Movie S2. As in Fig. 2, cate-
gorizing edges by their e-girths (illustrated in Fig. 3B for the starred
graph; see Fig. S4 for all 20 graphs) splits the rates into near-distinct
bands, despite the total absence of symmetry. However, the bands
are not perfectly distinct, and high-girth edges, in particular, display
a range of transition rates both within and across graphs. A large
portion of this variation is accounted for by considering the sizes of
all cycles containing an edge. Although the full dependence is
highly complex, we can obtain a good transition rate estimate by
considering just two cycles. Let ℓ1 = ge and ℓ2 be the sizes of the two
smallest cycles through e. (It may be that ℓ1 = ℓ2.) Drawing on our
earlier argument for the transition rate of an m-cycle, suppose

that flips of these two cycles occur independently with waiting
times Ti distributed exponentially at rates Λi = γexpð−αℓiÞ for
constants α, γ. The waiting time T =minfT1,T2g for one of these
to occur is then exponentially distributed with rate Λ1 +Λ2.
Therefore, hTi= ðΛ1 +Λ2Þ−1, and so the transition rate k= 1=hTi=
γG, where we have defined the girth-weighted rate

G= expð−αℓ1Þ+ expð−αℓ2Þ. [5]

Fitting k= γG to the data in Fig. 3A yields an exponent α= 1.31.
This gives a strong match to the data (Fig. 3C): the different e-girth
categories now spread out along the fit line, showing that Eq. 5
yields an easily computed heuristic to estimate the transition rates
of edges in a given graph better than ge alone.

Discussion
Incompressible Limit. Thus far, we have been considering approxi-
mate incompressibility with μ � λ but finite. We now pass to the
fully incompressible limit μ→∞, which necessitates a change of flow
representation. In this limit, the dynamics of Φ are constrained to
the null space ker D, and so Φmust be decomposed using a basis of
ker D (SI Incompressible Limit). The most physically intuitive de-
composition uses a cycle basis comprising a nonorthogonal set of
unit flux cycles, so that each basis element corresponds to adding or
removing a unit of flux around a single cycle. Finite planar graphs, in
particular, possess a highly intuitive cycle basis. Fix a planar em-
bedding for Γ. Let each fFαg be the component of anticlockwise flux
around each of the jEj− jVj+ 1 nonexternal (finite) faces of Γ, and
define the flux about the external (infinite) face to be zero. The flux
on an edge is then simply the difference of the fluxes about its two
adjacent faces. In particular, let A= ðAαeÞ be the matrix whose rows
are the cycle basis vectors, so that ϕe =FαAαe. This implies Fα =Pαeϕe
for P= ðAATÞ−1A. The components Fα then obey

dFα =−
�
PPT

�
αγ

∂Ĥ
∂Fγ

dt+
ffiffiffiffiffiffiffiffiffiffi
2β−1

q
dXα,t, [6]

where Ĥ is the reduced energy Ĥ = λ
P

e∈EV ðFαAαeÞ, and Xt is a
vector of correlated Brownian noise with covariance matrix

A B

Fig. 2. Transition rates in highly symmetric graphs are determined by cycle structure. (A) Transition rate for edges in the first eight generalized Petersen graphs
with λ= 2.5, μ=25, and β−1 = 0.05. The rate was determined for each edge, and then averaged within classes of equivalent edges. Symbols denote the rate for
each class, categorized by e-girth ge as in the key. The range of computed rates within each class is smaller than the symbols. (B) The graphs in A with their edge
equivalence classes when more than one exists. Edges colors denote ge as in A. Observe that identical e-girth does not imply equivalence of edges.
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PPT = ðAATÞ−1. Now, Aαe is nonzero only when edge e borders face
α, and is then +1 or −1 depending on the orientation of the edge
relative to the face. Therefore, A is all but one row of the incidence
matrix of the planar dual of Γ, where the missing row is that corre-
sponding to the external face, meaning ~L=AAT is the Laplacian on
vertices of the dual (its Kirchhoff matrix) with the row and column
corresponding to the external face deleted. Thus, the independent
edge noise turns into correlated noise with covariance ~L

−1, which is
typically nonzero almost everywhere. In other words, flux conserva-
tion means that the noise on one edge is felt across the entire graph.

Example. Fig. 4 shows an integration of Eq. 6 for an embedding
of the graph P4,1 (Fig. 2), the cube, whose covariance matrix ~L

−1 is
nonzero everywhere (SI Incompressible Limit and Fig. S2). [In fact,
the dual of a polyhedral graph is unique (48).] Note that the Fα need
not only fluctuate around states f−1,0,1g, as seen in Fig. 4 when a
state with F5 =+2 is attained. The constraint now is that the differ-
ence Fα −Fβ between adjacent faces α and β must be near f−1,0,1g,
as this is the flux on the shared edge. Here, the central face F5 can
assume ±2 if its neighbors are all ±1. In general, a face of minimum
distance d to the external face, which is constrained to zero flux, can
be metastable at values up to ±d if all its neighbors are at ±ðd− 1Þ.
A further example on a 15× 15 hexagonal lattice is given in Fig. S5.

Low Temperature Limit and Ice-Type Models. Similar to how a lattice
ϕ4 theory generalizes the Ising model (41), on a regular lattice, our
model in the incompressible limit gives a lattice field theory gen-
eralization of ice-type or loop models (42–44). Instead of there

being a finite set of permitted flow configurations at each vertex, we
now have a continuous space of configurations. Taking the low
temperature limit βλ→∞ then recovers a discrete vertex model
with ϕi ∈ f−1,0,1g, where allowed configurations must be maximally
flowing; thus, for example, a square lattice yields the six-vertex ice
model (42). For general Γ, the βλ→∞ limit can be understood as a
form of random subgraph model (49), where the ground states are
flows on maximum Eulerian subgraphs that are selected uniformly
with a multiplicity of two for either orientation of every subcycle. On
a cubic graph, a subset of the ground states are the Hamiltonian
cycles (cycles covering every vertex exactly once), if they exist, be-
cause a maximally flowing state will have two out of every three
edges at every vertex flowing. The expected number of Hamiltonian
cycles on a cubic graph grows like jVj−1=2ð4=3ÞjVj=2 as jVj→∞ (50),
meaning large cubic graphs possess a huge number of ground states.

Complex Networks. We have focused on small regular graphs, but
the dynamical principles presented here will still apply to active
flow on complex networks. The edges in a large random graph
typically exhibit a wide distribution of e-girths, where topologically
protected edges, whose e-girth is large enough to prevent them ever
changing state within a realistic observation window, coexist with
frequently switching edges of small e-girth. In fact, graphs drawn
from distributions modeling real-life network phenomena (13, 14)
seem to have far more small e-girth edges than their fixed degree or
uniformly random counterparts (SI Complex Networks and Fig. S3).
Furthermore, although large random graphs are almost always
asymmetric (45), many real-life complex networks have very large
automorphism groups (51), meaning that, as in Fig. 2, there will be
large sets of edges in such a network with identical transition rates.
Active flow on complex networks can therefore be expected to
display a rich phenomenology of local and global state transitions.

Conclusions
Our analysis shows that the state transition statistics of actively
driven quasi-incompressible flow networks can be understood
by combining reaction rate theory with graph-theoretic sym-
metry considerations. Furthermore, our results suggest that non-
equilibrium flow networks may offer new insights into ice-type

A

B

C

Fig. 4. Incompressible flow on planar graphs can be represented using a face-
based cycle basis. (A) Flux–time traces for flow about each of the internal faces
of P4,1, as labeled in C, from Eq. 6 with λ= 2.5 and β−1 = 0.05. (B) Zoom of trace
showing a transition between two 8-cycles, which are global minima, via a
6-cycle. (C ) Distinct state configurations in B of (Upper) face fluxes and
(Lower) corresponding edge flows.

A

B C

Fig. 3. Cycle structure determines edge transition rates in asymmetric graphs.
(A) Transition rate for each edge in 20 random asymmetric bridgeless cubic
graphs on 21 edges (SI Numerical Methods). Markers denote e-girth ge as per
the key in C. Parameters are λ= 2.5, μ= 25, and β−1 = 0.05. (B) One of the
graphs in A, corresponding to the marked column (⋆). Edges are colored and
labeled according to ge. All 20 graphs are shown in Fig. S4. See also Movie S2.
(C) Transition rates k from A binned by girth-weighted rate G, using best-fit
value α= 1.31, with markers denoting ge as per the key. Horizontal error bars
are range of marker position over 95% confidence interval in α, and vertical
error bars are ±1 SD in k within each group. Solid line is best fit k= γG, and
dashed lines are 95% prediction intervals on k with α fixed.
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models and vice versa. The framework developed here offers
ample opportunity for future generalizations from both a bio-
physical and a transport optimization perspective. For example,
an interesting open biological question concerns how plasmodial
organisms such as Physarum (3, 6, 7) adapt and optimize their
network structure in response to external stimuli, such as light or
nutrient sources or geometric constraints (52, 53). Our investigation
suggests that a combined experimental and mathematical analysis of
cycle structure may help explain the decentralized computation
strategies used by these organisms. More generally, it will be in-
teresting to explore whether similar symmetry-based statistical ap-
proaches can guide the topological optimization of other classes of

nonequilibrium networks, including neuronal and man-made in-
formation flow networks that typically operate far from equilibrium.

Materials and Methods
Eqs. 2 and 6 were integrated by the Euler–Maruyama method (54) with time
step δt =5× 10−3. Mathematica (Wolfram Research, Inc.) was used to generate
and analyze all graphs. For full details, see SI Numerical Methods. All data are
available on request.
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