1,629 research outputs found
49Cr: Towards full spectroscopy up to 4 MeV
The nucleus 49Cr has been studied analysing gamma-gamma coincidences in the
reaction 46Ti(alpha,n)49Cr at the bombarding energy of 12 MeV. The level scheme
has been greatly extended at low excitation energy and several new lifetimes
have been determined by means of the Doppler Shift Attenuation Method.
Shell model calculations in the full pf configuration space reproduce well
negative-parity levels. Satisfactory agreement is obtained for positive parity
levels by extending the configuration space to include a nucleon-hole either in
the 1d3/2 or in the 2s1/2 orbitals.
A nearly one-to-one correspondence is found between experimental and
theoretical levels up to an excitation energy of 4 MeV.
Experimental data and shell model calculations are interpreted in terms of
the Nilsson diagram and the particle-rotor model, showing the strongly coupled
nature of the bands in this prolate nucleus. Nine values of K(pi) are proposed
for the levels observed in this experiment.
As a by-result it is shown that the values of the experimental magnetic
moments in 1f7/2 nuclei are well reproduced without quenching the nucleon
g-factors.Comment: 13 pages, 8 figure
Lifetime Measurements in 120Xe
Lifetimes for the lowest three transitions in the nucleus Xe have
been measured using the Recoil Distance Technique. Our data indicate that the
lifetime for the transition is more than a factor of
two lower than the previously adopted value and is in keeping with more recent
measurements performed on this nucleus. The theoretical implications of this
discrepancy and the possible reason for the erroneous earlier results are
discussed. All measured lifetimes in Xe, as well as the systematics of
the lifetimes of the 2 states in Xe isotopes, are compared with
predictions of various models. The available data are best described by the
Fermion Dynamic Symmetry Model (FDSM).Comment: 9 pages, RevTeX, 3 figures with Postscript file available on request
at [email protected], [email protected]. Submitted to Phys.
Rev.
Естественная радиоактивность кольчугинской серии отложений Ленинского геолого-экономического района Кузбасса
Рассматриваются на основании исследования 1435 образцов горных пород естественные радиоактивные свойства мелко- и крупнозернистого алевролитов и мелкозернистого песчаника, а также каменных углей. Отмечается различие по естественной радиоактивности между основными литологическими разностями пород, слагающих кольчугинскую серию. Естественная радиоактивность пород закономерно уменьшается от алевролитов к песчаникам и к углям. Угли по естественной радиоактивности резко отличаются от вмещающих пород
Shape and structure of N=Z 64Ge; Electromagnetic transition rates from the application of the Recoil Distance Method to knock-out reaction
Transition rate measurements are reported for the first and the second 2+
states in N=Z 64Ge. The experimental results are in excellent agreement with
large-scale Shell Model calculations applying the recently developed GXPF1A
interactions. Theoretical analysis suggests that 64Ge is a collective
gamma-soft anharmonic vibrator. The measurement was done using the Recoil
Distance Method (RDM) and a unique combination of state-of-the-art instruments
at the National Superconducting Cyclotron Laboratory (NSCL). States of interest
were populated via an intermediate-energy single-neutron knock-out reaction.
RDM studies of knock-out and fragmentation reaction products hold the promise
of reaching far from stability and providing lifetime information for excited
states in a wide range of nuclei
Observation of isotonic symmetry for enhanced quadrupole collectivity in neutron-rich 62,64,66Fe isotopes at N=40
The transition rates for the 2_{1}^{+} states in 62,64,66Fe were studied
using the Recoil Distance Doppler-Shift technique applied to projectile Coulomb
excitation reactions. The deduced E2 strengths illustrate the enhanced
collectivity of the neutron-rich Fe isotopes up to N=40. The results are
interpreted by the generalized concept of valence proton symmetry which
describes the evolution of nuclear structure around N=40 as governed by the
number of valence protons with respect to Z~30. The deformation suggested by
the experimental data is reproduced by state-of-the-art shell calculations with
a new effective interaction developed for the fpgd valence space.Comment: 4 pages, 2 figure
METHOTREXATE ACTION IN RHEUMATOID ARTHRITIS: STIMULATION OF CYTOKINE INHIBITOR AND INHIBITION OF CHEMOKINE PRODUCTION BY PERIPHERAL BLOOD MONONUCLEAR CELLS
This open label study examines whether methotrexate (MTX) treatment modulates ex vivo synthesis of interleukin-1 receptor antagonist (IL-lra), soluble tumour necrosis factor receptors(sTNFR p55 and p75), interleukin-1β (IL-1β), tumour necrosis factor α(TNF-α), interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) by peripheral blood mononuclear cells (PBMC} and whether changes reflect clinical response. Significant stimulation of IL-lra and sTNFR p75 as well as inhibition of IL-8 production of PBMC were associated with clinical improvement observed in patients treated with MTX. When defining the characteristics of patients at study entry retrospectively in responders and non-responders a significantly lower ratio of IL-lra :IL-1β production before and its increase upon treatment was associated with clinical response in 13 patients compared to five patients not responding to MTX. In addition, clinical improvement was associated with decreased synthesis of IL-1β, TNF-α and IL-8 induced by bacterial lipopolysaccharide, IL-1α and IL-1β in PBMC in vitro. These findings suggest that MTX therapy reverses the inflammatory type of rheumatoid arthritis (RA) blood mononuclear cells by stimulating cytokine inhibitor production while inhibiting inflammatory cytokine release at the same time. This may explain the powerful anti-inflammatory properties of low-dose MTX as observed in most RA patients. Pretreatment determination of the IL-lra: IL-1β ratio in PBMC may be predictive with regard to a favourable therapeutic response and therefore may be useful for the selection of RA patients to be treated with MT
Lifetime determination of excited states in Cd-106
Two separate experiments using the Differential Decay Curve Method have been performed to extract mean lifetimes of excited states in 106 Cd. The inedium-spin states of interest were populated by the Mo-98(C-12, 4n) Cd-106 reaction performed at the Wright Nuclear Structure Lab., Yale University. From this experiment, two isomeric state mean lifetimes have been deduced. The low-lying states were populated by the Mo-96(C-13, 3n)Cd-106 reaction performed at the Institut fur Kernphysik, Universitat zu Koln. The mean lifetime of the I-pi = 2(1)(+) state was deduced, tentatively, as 16.4(9) ps. This value differs from the previously accepted literature value from Coulomb excitation of 10.43(9) ps
Apomixis and the Reproductive Dynamics of Eastern Gamagrass Tripsacum Dactyloides L.
Studies were conducted to determine the reproductive characteristics of Tripsacum, a perennial, native pasture species and to identify methods for breeding agronomically superior cultivars. Reproductive methods and types of individuals generated were evaluated with triploid and hexaploids possessing a novel method for transferring sexual germplasm into apomictic tetraploids and tetraploid germplasm into sexual diploids. Triploids and hexaploids are demonstrated to be useful materials for introgressing and transferring desirable alleles across ploidy levels and reproductive barriers
The proangiogenic capacity of polymorphonuclear neutrophils delineated by microarray technique and by measurement of neovascularization in wounded skin of CD18-deficient mice
Growing evidence supports the concept that polymorphonuclear neutrophils (PMN) are critically involved in inflammation-mediated angiogenesis which is important for wound healing and repair. We employed an oligonucleotide microarray technique to gain further insight into the molecular mechanisms underlying the proangiogenic potential of human PMN. In addition to 18 known angiogenesis-relevant genes, we detected the expression of 10 novel genes, namely midkine, erb-B2, ets-1, transforming growth factor receptor-beta(2) and -beta(3), thrombospondin, tissue inhibitor of metalloproteinase 2, ephrin A2, ephrin B2 and restin in human PMN freshly isolated from the circulation. Gene expression was confi rmed by the RT-PCR technique. In vivo evidence for the role of PMN in neovascularization was provided by studying neovascularization in a skin model of wound healing using CD18-deficient mice which lack PMN infi ltration to sites of lesion. In CD18-deficient animals, neo- vascularization was found to be signifi cantly compromised when compared with wild- type control animals which showed profound neovascularization within the granulation tissue during the wound healing process. Thus, PMN infiltration seems to facilitate inflammation mediated angiogenesis which may be a consequence of the broad spectrum of proangiogenic factors expressed by these cells. Copyright (c) 2006 S. Karger AG, Basel
Transition probabilities in the X(5) candidate Ba
To investigate the possible X(5) character of 122Ba, suggested by the ground
state band energy pattern, the lifetimes of the lowest yrast states of 122Ba
have been measured, via the Recoil Distance Doppler-Shift method. The relevant
levels have been populated by using the 108Cd(16O,2n)122Ba and the
112Sn(13C,3n)122Ba reactions. The B(E2) values deduced in the present work are
compared to the predictions of the X(5) model and to calculations performed in
the framework of the IBA-1 and IBA-2 models
- …
