532 research outputs found

    Sonoluminescence and collapse dynamics of multielectron bubbles in helium

    Full text link
    Multielectron bubbles (MEBs) differ from gas-filled bubbles in that it is the Coulomb repulsion of a nanometer thin layer of electrons that forces the bubble open rather than the pressure of an enclosed gas. We analyze the implosion of MEBs subjected to a pressure step, and find that despite the difference in the underlying processes the collapse dynamics is similar to that of gas-filled bubbles. When the MEB collapses, the electrons inside it undergo strong accelerations, leading to the emission of radiation. This type of sonoluminescence does not involve heating and ionisation of any gas inside the bubble. We investigate the conditions necessary to obtain sonoluminescence from multielectron bubbles and calculate the power spectrum of the emitted radiation.Comment: 6 figure

    Optical Absorption of an Interacting Many-Polaron Gas

    Full text link
    The optical absorption of a many (continuum) polaron gas is derived in the framework of a variational approach at zero temperature and weak or intermediate electron-phonon coupling strength. We derive a compact formula for the optical conductivity of the many-polaron system taking into account many-body effects in the electron or hole system. Within the method presented here, these effects are contained completely in the dynamical structure factor of the electron or hole system. This allows to build on well-established studies of the interacting electron gas. Based on this approach a novel feature in the absorption spectrum of the many-polaron gas, related to the emission of a plasmon together with a phonon, is identified. As an application and illustration of the technique, we compare the theoretical many-polaron optical absorption spectrum as derived in the present work with the `d-band' absorption feature in Nd2_{2}CuO2_{2}. Similarities are shown between the theoretically and the experimentally derived first frequency moment of the optical absorption of a family of differently doped Nd2x_{2-x}Cex_{x}CuO4y_{4-y} materials.Comment: 24 pages, 5 figures; revised and expanded versio

    Three-Fluid Description of the Sympathetic Cooling of a Boson-Fermion Mixture

    Full text link
    We present a model for sympathetic cooling of a mixture of fermionic and bosonic atomic gases in harmonic traps, based on a three-fluid description. The model confirms the experimentally observed cooling limit of about 0.2 T_F when only bosons are pumped. We propose sequential cooling -- first pumping of bosons and afterwards fermions -- as a way to obtain lower temperatures. For this scheme, our model predicts that temperatures less than 0.1 T_F can be reached.Comment: 9 pages, 6 figure

    Quantum Transport in a Nanosize Silicon-on-Insulator Metal-Oxide-Semiconductor

    Full text link
    An approach is developed for the determination of the current flowing through a nanosize silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistors (MOSFET). The quantum mechanical features of the electron transport are extracted from the numerical solution of the quantum Liouville equation in the Wigner function representation. Accounting for electron scattering due to ionized impurities, acoustic phonons and surface roughness at the Si/SiO2 interface, device characteristics are obtained as a function of a channel length. From the Wigner function distributions, the coexistence of the diffusive and the ballistic transport naturally emerges. It is shown that the scattering mechanisms tend to reduce the ballistic component of the transport. The ballistic component increases with decreasing the channel length.Comment: 21 pages, 8 figures, E-mail addresses: [email protected]

    Dynamic correlations of the Coulomb Luttinger liquid

    Full text link
    The dynamic density response function, form-factor, and spectral function of a Luttinger liquid with Coulomb electron-electron interaction are studied with the emphasis on the short-range electron correlations. The Coulomb interaction changes dramatically the density response function as compared to the case of the short-ranged interaction. The form of the density response function is smoothing with time, and the oscillatory structure appears. However, the spectral functions remain qualitatively the same. The dynamic form-factor contains the δ\delta-peak in the long-wave region, corresponding to one-boson excitations. Besides, the multi-boson-excitations band exists in the wave-number region near to 2kF2k_F. The dynamic form-factor diverges at the edges of this band, while the dielectric function goes to zero there, which indicates the appearance of a soft mode. We develop a method to analyze the asymptotics of the spectral functions near to the edges of the multi-boson-excitations band.Comment: 11 pages, 3 figures, submitted to PR

    Polaron self-trapping in a honeycomb net

    Full text link
    Small polaron behavior in a two dimensional honeycomb net is studied by applying the strong coupling perturbative method to the Holstein molecular crystal model. We find that small optical polarons can be mobile also if the electrons are strongly coupled to the lattice. Before the polarons localize and become very heavy, there is infact a window of {\it e-ph} couplings in which the polarons are small and have masses of order 550\simeq 5 - 50 times the bare band mass according to the value of the adiabaticity parameter. The 2D honeycomb net favors the mobility of small optical polarons in comparison with the square lattice.Comment: 6 pages, 3 figures, to appear in J.Phys.:Condensed Matter {PACS: 63.10.+a, 63.20.Dj, 71.38.+i

    Strong energy-momentum dispersion of phonon-dressed carriers in the lightly doped band insulator SrTiO3_3

    Get PDF
    Much progress has been made recently in the study of the effects of electron-phonon (el-ph) coupling in doped insulators using angle resolved photoemission (ARPES), yielding evidence for the dominant role of el-ph interactions in underdoped cuprates. As these studies have been limited to doped Mott insulators, the important question arises how this compares with doped band insulators where similar el-ph couplings should be at work. The archetypical case is the perovskite SrTiO3_3 (STO), well known for its giant dielectric constant of 10000 at low temperature, exceeding that of La2_2CuO4_4 by a factor of 500. Based on this fact, it has been suggested that doped STO should be the archetypical bipolaron superconductor. Here we report an ARPES study from high-quality surfaces of lightly doped SrTiO3_3. Comparing to lightly doped Mott insulators, we find the signatures of only moderate electron-phonon coupling: a dispersion anomaly associated with the low frequency optical phonon with a λ0.3\lambda'\sim0.3 and an overall bandwidth renormalization suggesting an overall λ0.7\lambda'\sim0.7 coming from the higher frequency phonons. Further, we find no clear signatures of the large pseudogap or small polaron phenomena. These findings demonstrate that a large dielectric constant itself is not a good indicator of el-ph coupling and highlight the unusually strong effects of the el-ph coupling in doped Mott insulators

    Momentum distribution of confined bosons: temperature dependence

    Full text link
    The momentum distribution function of a parabolically confined gas of bosons with harmonic interparticle interactions is derived. In the Bose-Einstein condensation region, this momentum distribution substantially deviates from a Maxwell-Boltzmann distribution. It is argued that the determination of the temperature of the boson gas from the Bose-Einstein momentum distribution function is more appropriate than the currently used fitting to the high momentum tail of the Maxwell-Boltzmann distribution.Comment: 5 REVTEX pages + 2 postscript figures. Accepted in Phys. Rev.
    corecore