327 research outputs found
Optical conductivity of the Frohlich polaron
We present accurate results for optical conductivity of the three dimensional
Frohlich polaron in all coupling regimes. The systematic-error free
diagrammatic quantum Monte Carlo method is employed where the Feynman graphs
for the momentum-momentum correlation function in imaginary time are summed up.
The real-frequency optical conductivity is obtained by the analytic
continuation with stochastic optimization. We compare numerical data with
available perturbative and non-perturbative approaches to the optical
conductivity and show that the picture of sharp resonances due to relaxed
excited states in the strong coupling regime is ``washed out''by large
broadening of these states. As a result, the spectrum contains only a
single-maximum broad peak with peculiar shape and a shoulder.Comment: 4 pages, 6 ps-figure
Optical Absorption of an Interacting Many-Polaron Gas
The optical absorption of a many (continuum) polaron gas is derived in the
framework of a variational approach at zero temperature and weak or
intermediate electron-phonon coupling strength. We derive a compact formula for
the optical conductivity of the many-polaron system taking into account
many-body effects in the electron or hole system. Within the method presented
here, these effects are contained completely in the dynamical structure factor
of the electron or hole system. This allows to build on well-established
studies of the interacting electron gas. Based on this approach a novel feature
in the absorption spectrum of the many-polaron gas, related to the emission of
a plasmon together with a phonon, is identified. As an application and
illustration of the technique, we compare the theoretical many-polaron optical
absorption spectrum as derived in the present work with the `d-band' absorption
feature in NdCuO. Similarities are shown between the theoretically
and the experimentally derived first frequency moment of the optical absorption
of a family of differently doped NdCeCuO materials.Comment: 24 pages, 5 figures; revised and expanded versio
Three-Fluid Description of the Sympathetic Cooling of a Boson-Fermion Mixture
We present a model for sympathetic cooling of a mixture of fermionic and
bosonic atomic gases in harmonic traps, based on a three-fluid description. The
model confirms the experimentally observed cooling limit of about 0.2 T_F when
only bosons are pumped. We propose sequential cooling -- first pumping of
bosons and afterwards fermions -- as a way to obtain lower temperatures. For
this scheme, our model predicts that temperatures less than 0.1 T_F can be
reached.Comment: 9 pages, 6 figure
Sonoluminescence and collapse dynamics of multielectron bubbles in helium
Multielectron bubbles (MEBs) differ from gas-filled bubbles in that it is the
Coulomb repulsion of a nanometer thin layer of electrons that forces the bubble
open rather than the pressure of an enclosed gas. We analyze the implosion of
MEBs subjected to a pressure step, and find that despite the difference in the
underlying processes the collapse dynamics is similar to that of gas-filled
bubbles. When the MEB collapses, the electrons inside it undergo strong
accelerations, leading to the emission of radiation. This type of
sonoluminescence does not involve heating and ionisation of any gas inside the
bubble. We investigate the conditions necessary to obtain sonoluminescence from
multielectron bubbles and calculate the power spectrum of the emitted
radiation.Comment: 6 figure
Polaron self-trapping in a honeycomb net
Small polaron behavior in a two dimensional honeycomb net is studied by
applying the strong coupling perturbative method to the Holstein molecular
crystal model. We find that small optical polarons can be mobile also if the
electrons are strongly coupled to the lattice. Before the polarons localize and
become very heavy, there is infact a window of {\it e-ph} couplings in which
the polarons are small and have masses of order times the bare
band mass according to the value of the adiabaticity parameter. The 2D
honeycomb net favors the mobility of small optical polarons in comparison with
the square lattice.Comment: 6 pages, 3 figures, to appear in J.Phys.:Condensed Matter {PACS:
63.10.+a, 63.20.Dj, 71.38.+i
Momentum distribution of confined bosons: temperature dependence
The momentum distribution function of a parabolically confined gas of bosons
with harmonic interparticle interactions is derived. In the Bose-Einstein
condensation region, this momentum distribution substantially deviates from a
Maxwell-Boltzmann distribution. It is argued that the determination of the
temperature of the boson gas from the Bose-Einstein momentum distribution
function is more appropriate than the currently used fitting to the high
momentum tail of the Maxwell-Boltzmann distribution.Comment: 5 REVTEX pages + 2 postscript figures. Accepted in Phys. Rev.
Semiquantitative interpretation of anticardiolipin and antiβ2glycoprotein I antibodies measured with various analytical platforms: communication from the ISTH SSC subcommittee on Lupus Anticoagulant/Antiphospholipid antibodies
Background
Antiβ2glycoprotein I (aβ2GPI) and anticardiolipin (aCL) IgG/IgM show differences in positive/negative agreement and titers between solid phase platforms. Method specific semiquantitative categorization of titers could improve and harmonize the interpretation across platforms.
Aim
To evaluate the traditionally 40/80 units thresholds used for aCL and aβ2GPI for categorization into moderate/high positivity with different analytical systems, and to compare with alternative thresholds.
Material and methods
aCL and aβ2GPI thresholds were calculated for two automated systems (chemiluminescent immunoassay (CLIA) and multiplex flow immunoassay (MFI)) by ROC-curve analysis on 1108 patient samples, including patients with and without APS, and confirmed on a second population (n=279). Alternatively, regression analysis on diluted standard material was applied to identify thresholds. Thresholds were compared to 40/80 threshold measured by an enzyme linked immunosorbent assay (ELISA). Additionally, likelihood ratios (LR) were calculated.
Results
Threshold levels of 40/80 units show poor agreement between ELISA and automated platforms for classification into low/moderate/high positivity, especially for aCL/aβ2GPI IgG. Agreement for semiquantitative interpretation of aPL IgG between ELISA and CLIA/MFI improves with alternative thresholds. LR for aPL IgG increase for thrombotic and obstetric APS based on 40/80 thresholds for ELISA and adapted thresholds for the other systems, but not for IgM.
Conclusion
Use of 40/80 units as medium/high thresholds is acceptable for aCL/aβ2GPI IgG ELISA, but not for CLIA and MFI. Alternative semiquantitative thresholds for non-ELISA platforms can be determined by a clinical approach or by using monoclonal antibodies. Semiquantitative reporting of aPL IgM has less impact on increasing probability for APS
- …