484 research outputs found
The cool end of the DZ sequence in the SDSS
We report the discovery of cool DZ white dwarfs, which lie in the SDSS (u-g)
vs. (g-r) two-color diagram across and below the main sequence. These stars
represent the extension of the well-known DZ sequence towards cooler
temperatures.Comment: To appear in the proceedings of the "17th European Workshop on White
Dwarfs", Tuebingen, Germany, August 16-20, 201
The pre-cataclysmic variable, LTT 560
Aims. System parameters of the object LTT560 are determined in order to clarify its nature and evolutionary status.
Methods. We apply time-series photometry to reveal orbital modulations of the light curve, time-series spectroscopy to measure radial velocities of features from both the primary and the secondary star, and flux-calibrated spectroscopy to derive temperatures of both components.
Results. We find that LTT 560 is composed of a low temperature (T ∼ 7500 K) DA white dwarf as the primary and an M5.5±1 mainsequence star as the secondary component. The current orbital period is Porb = 3.54(07) h.We derive a mass ratio Msec/Mwd = 0.36(03) and estimate the distance to d = 25–40 pc. Long-term variation of the orbital light curve and an additional Hα emission component
on the white dwarf indicate activity in the system, probably in the form of flaring and/or accretion events
Photochemical evolution of continental outflow to Pico Mountain (Azores): Integrating observations with CTM simulations in lowerFT outflow.
Workshop on Integrated Observations for Assessing Hemispheric Transport. Geneva, Switzerland, 24-26 January 2007.An analysis of the consistency of lower-FT observations with chemical transport model (CTM) simulations in aged U.S. export
First measurement of the Non-instantaneous response Time of a χ(3) nonlinear optical effect
The third harmonic of a few-cycle pulse, generated at different dielectric surfaces, is investigated using interferometric frequency-resolved optical gating. We present direct experimental evidence for a non-instantaneous nonlinear response in a TiO2 thin film whereas surface third-harmonic generation in a SiO2 sample does not show any indication for non-instanteneity. To the best of our knowledge, this constitutes the first report of a non-instantaneous nonlinear optical response of a dielectric optical material
Stable quantum systems in anti-de Sitter space: Causality, independence and spectral properties
If a state is passive for uniformly accelerated observers in n-dimensional
anti-de Sitter space-time (i.e. cannot be used by them to operate a perpetuum
mobile), they will (a) register a universal value of the Unruh temperature, (b)
discover a PCT symmetry, and (c) find that observables in complementary
wedge-shaped regions necessarily commute with each other in this state. The
stability properties of such a passive state induce a "geodesic causal
structure" on AdS and concommitant locality relations. It is shown that
observables in these complementary wedge-shaped regions fulfill strong
additional independence conditions. In two-dimensional AdS these even suffice
to enable the derivation of a nontrivial, local, covariant net indexed by
bounded spacetime regions. All these results are model-independent and hold in
any theory which is compatible with a weak notion of space-time localization.
Examples are provided of models satisfying the hypotheses of these theorems.Comment: 27 pages, 1 figure: dedicated to Jacques Bros on the occasion of his
70th birthday. Revised version: typos corrected; as to appear in J. Math.
Phy
Nuclearity and Thermal States in Conformal Field Theory
We introduce a new type of spectral density condition, that we call
L^2-nuclearity. One formulation concerns lowest weight unitary representations
of SL(2,R) and turns out to be equivalent to the existence of characters. A
second formulation concerns inclusions of local observable von Neumann algebras
in Quantum Field Theory. We show the two formulations to agree in chiral
Conformal QFT and, starting from the trace class condition for the semigroup
generated by the conformal Hamiltonian L_0, we infer and naturally estimate the
Buchholz-Wichmann nuclearity condition and the (distal) split property. As a
corollary, if L_0 is log-elliptic, the Buchholz-Junglas set up is realized and
so there exists a beta-KMS state for the translation dynamics on the net of
C*-algebras for every inverse temperature beta>0. We include further
discussions on higher dimensional spacetimes. In particular, we verify that
L^2-nuclearity is satisfied for the scalar, massless Klein-Gordon field.Comment: 37 pages, minor correction
Warped Convolutions, Rieffel Deformations and the Construction of Quantum Field Theories
Warped convolutions of operators were recently introduced in the algebraic
framework of quantum physics as a new constructive tool. It is shown here that
these convolutions provide isometric representations of Rieffel's strict
deformations of C*-dynamical systems with automorphic actions of R^n, whenever
the latter are presented in a covariant representation. Moreover, the device
can be used for the deformation of relativistic quantum field theories by
adjusting the convolutions to the geometry of Minkowski space. The resulting
deformed theories still comply with pertinent physical principles and their
Tomita-Takesaki modular data coincide with those of the undeformed theory; but
they are in general inequivalent to the undeformed theory and exhibit different
physical interpretations.Comment: 34 page
A strategy for the characterization of minute chromosome rearrangements using multiple color fluorescence in situ hybridization with chromosome-specific DNA libraries and YAC clones
The identification of marker chromosomes in clinical and tumor cytogenetics by chromosome banding analysis can create problems. In this study, we present a strategy to define minute chromosomal rearrangements by multicolor fluorescence in situ hybridization (FISH) with whole chromosome painting probes derived from chromosome-specific DNA libraries and Alu-polymerase chain reaction (PCR) products of various region-specific yeast artificial chromosome (YAC) clones. To demonstrate the usefulness of this strategy for the characterization of chromosome rearrangements unidentifiable by banding techniques, an 8p+ marker chromosome with two extra bands present in the karyotype of a child with multiple anomalies, malformations, and severe mental retardation was investigated. A series of seven-color FISH experiments with sets of fluorochrome-labeled DNA library probes from flow-sorted chromosomes demonstrated that the additional segment on 8p+ was derived from chromosome 6. For a more detailed characterization of the marker chromosome, three-color FISH experiments with library probes specific to chromosomes 6 and 8 were performed in combination with newly established telomeric and subtelomeric YAC clones from 6q25, 6p23, and 8p23. These experiments demonstrated a trisomy 6pter6p22 and a monosomy 8pter8p23 in the patient. The present limitations for a broad application of this strategy and its possible improvements are discusse
The Global Atmosphere Watch reactive gases measurement network
Long-term observations of reactive gases in the troposphere are important for understanding trace gas cycles and the oxidation capacity of the atmosphere, assessing impacts of emission changes, verifying numerical model simulations, and quantifying the interactions between short-lived compounds and climate change. The World Meteorological Organization’s (WMO) Global Atmosphere Watch (GAW) program coordinates a global network of surface stations some of which have measured reactive gases for more than 40 years. Gas species included under this umbrella are ozone, carbon monoxide, nitrogen oxides, and volatile organic compounds (VOCs). There are many challenges involved in setting-up and maintaining such a network over many decades and to ensure that data are of high quality, regularly updated and made easily accessible to users. This overview describes the GAW surface station network of reactive gases, its unique quality management framework, and discusses the data that are available from the central archive. Highlights of data use from the published literature are reviewed, and a brief outlook into the future of GAW is given. This manuscript constitutes the overview of a special feature on GAW reactive gases observations with individual papers reporting on research and data analysis of particular substances being covered by the program. - See more at: http://elementascience.org/article/info:doi/10.12952/journal.elementa.000067#sthash.cHvHu0T6.dpu
The unexpected resurgence of Weyl geometry in late 20-th century physics
Weyl's original scale geometry of 1918 ("purely infinitesimal geometry") was
withdrawn by its author from physical theorizing in the early 1920s. It had a
comeback in the last third of the 20th century in different contexts: scalar
tensor theories of gravity, foundations of gravity, foundations of quantum
mechanics, elementary particle physics, and cosmology. It seems that Weyl
geometry continues to offer an open research potential for the foundations of
physics even after the turn to the new millennium.Comment: Completely rewritten conference paper 'Beyond Einstein', Mainz Sep
2008. Preprint ELHC (Epistemology of the LHC) 2017-02, 92 pages, 1 figur
- …
