5,574 research outputs found
Organic-Inorganic Composites of Semiconductor Nanocrystals for Efficient Excitons
Cataloged from PDF version of article.Nanocomposites of colloidal semiconductor nanocrystals integrated into conjugated polymers are the key to soft-material hybrid optoelectronics, combining advantages of both plastics and particles. Synergic combination of the favorable properties in the hybrids of colloidal nanocrystals and conjugated polymers offers enhanced performance and new functionalities in light-generation and light-harvesting applications, where controlling and mastering the excitonic interactions at the nanoscale are essential. In this Perspective, we highlight and critically consider the excitonic interactions in the organic inorganic nanocomposites to achieve highly efficient exciton transfer through rational design of the nanocomposites. The use of strong excitonic interactions in optoelectronic devices can trigger efficiency breakthroughs in hybrid optoelectronics
Submerged laser microcutting of Mg alloys with ns pulsed green laser for biodegradable stents
Graph run-length matrices for histopathological image segmentation
Cataloged from PDF version of article.The histopathological examination of tissue specimens is essential for cancer diagnosis and grading. However, this examination is subject to a considerable amount of observer variability as it mainly relies on visual interpretation of pathologists. To alleviate this problem, it is very important to develop computational quantitative tools, for which image segmentation constitutes the core step. In this paper, we introduce an effective and robust algorithm for the segmentation of histopathological tissue images. This algorithm incorporates the background knowledge of the tissue organization into segmentation. For this purpose, it quantifies spatial relations of cytological tissue components by constructing a graph and uses this graph to define new texture features for image segmentation. This new texture definition makes use of the idea of gray-level run-length matrices. However, it considers the runs of cytological components on a graph to form a matrix, instead of considering the runs of pixel intensities. Working with colon tissue images, our experiments demonstrate that the texture features extracted from "graph run-length matrices" lead to high segmentation accuracies, also providing a reasonable number of segmented regions. Compared with four other segmentation algorithms, the results show that the proposed algorithm is more effective in histopathological image segmentatio
After-body liner performance predictions on bypass exhaust fan noise with a simple 3/4 cowl geometry and coaxial mean flow
Aft fan noise is becoming a more dominant source as engine bypass ratio is increased and
improved methods are required for its control. Bypass liners are especially effective in
attenuating aft fan noise, but, in recent papers we introduced the idea of using acoustic
linings on external parts of the aero-engine nacelle, such as the afterbody and plug nozzle.
We showed that when the afterbody is acoustically lined, it can reduces the far field
broadband sound power by up to 3 dB in the absence of flow, an experimental result which
was confirmed with calculations using a commercially available CAA code. In this paper, we
extend the previous computations to include the effects of a two-stream coaxial flow using
the same CAA code but with a new 1D membrane element to represent the shear layers. The
results, supported by two analytical models, confirm our expectations that the AL could also
provide significant reductions in aft fan with flow. As anticipated the main flow effect is to
refract the no-flow insertion loss to larger angles outside the cone of silence, with little or no
benefits inside the cone of silence. However, it should be emphasised that although the
results obtained so far are with a representative mean flow, the geometry is still idealized
and these and other computations have to be validated with data from large-scale tests based
on a fully realistic geometry and flow
Optimization of double drive pulse pumping in Ne-like Ge x-ray lasers
Pumping of the Ne-like Ge x-ray laser with two 100 ps duration pulses (a prepulse and main pulse) is investigated using a fluid and atomic physics code coupled to a 3D ray tracing postprocessor code. The modeling predicts the optimum ratio of the irradiance of the two pulses for the maximum x-ray laser output resulting from the balance between the relative lower electron density gradients and wider gain region which is produced with a larger prepulse and the higher peak gain coefficients produced with a small prepulse. With a longer pulse interval between prepulse and main pulse, a relatively lower optimum pulse ratio is found. The threshold irradiance of the main driving pulse with a prepulse required to make an order of magnitude enhancement of laser output compared to irradiation without a prepulse is also found at 3-4x10(13) W/cm(2) for Ne-like Ge. (C) 1998 American Institute of Physics
Estimating the chance of success in IVF treatment using a ranking algorithm
In medicine, estimating the chance of success for treatment is important in deciding whether to begin the treatment or not. This paper focuses on the domain of in vitro fertilization (IVF), where estimating the outcome of a treatment is very crucial in the decision to proceed with treatment for both the clinicians and the infertile couples. IVF treatment is a stressful and costly process. It is very stressful for couples who want to have a baby. If an initial evaluation indicates a low pregnancy rate, decision of the couple may change not to start the IVF treatment. The aim of this study is twofold, firstly, to develop a technique that can be used to estimate the chance of success for a couple who wants to have a baby and secondly, to determine the attributes and their particular values affecting the outcome in IVF treatment. We propose a new technique, called success estimation using a ranking algorithm (SERA), for estimating the success of a treatment using a ranking-based algorithm. The particular ranking algorithm used here is RIMARC. The performance of the new algorithm is compared with two well-known algorithms that assign class probabilities to query instances. The algorithms used in the comparison are Naïve Bayes Classifier and Random Forest. The comparison is done in terms of area under the ROC curve, accuracy and execution time, using tenfold stratified cross-validation. The results indicate that the proposed SERA algorithm has a potential to be used successfully to estimate the probability of success in medical treatment. © 2015, The Author(s)
Optical antenna of comb-shaped split ring architecture for increased field localization in NIR and MIR
Cataloged from PDF version of article.We propose and demonstrate novel designs of optical antennas based on comb-shaped split ring architecture that display multi resonance field intensity enhancement spectrum. These nanoantennas achieve substantially increased field localization at longer wavelengths than that of a single or an array of dipoles with the same side length. With these optical antennas, localizing near infrared (NIR) and mid infrared (MIR) lights within a region of tens of nanometers at an intensity enhancement level of the order of thousands of magnitude can be accomplished. (C)2013 Optical Society of America
- …
