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ABSTRACT: Nanocomposites of colloidal semiconductor nanocrystals
integrated into conjugated polymers are the key to soft-material hybrid
optoelectronics, combining advantages of both plastics and particles. Synergic
combination of the favorable properties in the hybrids of colloidal nanocrystals
and conjugated polymers offers enhanced performance and new functionalities
in light-generation and light-harvesting applications, where controlling and
mastering the excitonic interactions at the nanoscale are essential. In this
Perspective, we highlight and critically consider the excitonic interactions in the
organic−inorganic nanocomposites to achieve highly efficient exciton transfer
through rational design of the nanocomposites. The use of strong excitonic
interactions in optoelectronic devices can trigger efficiency breakthroughs in
hybrid optoelectronics.

Both colloidal semiconductor nanocrystals (NCs) and π-
conjugated semiconductor polymers (CPs) are attractive

materials for a broad range of applications including
bioimaging,1,2 sensing,3,4 electronics,5,6 and photonics.7,8

Using these emerging materials for energy-efficient lighting,
display and photovoltaic technologies have gained escalating
interest in the past 2 decades.9−12 To this end, combining
favorable optical properties of the colloidal semiconductor NCs
and versatile physical properties of the conjugated polymers in
hybrid platforms offers enabling opportunities for high-
performance devices along with new functionalities. For this
purpose, in the organic−inorganic composite systems, control-
ling the photophysical properties becomes crucial. These
properties principally comprise excitons and excitonic pro-
cesses, which include exciton formation, diffusion, transfer, and
dissociation as well as radiative and nonradiative recombination
of the excitons. These excitonic processes are schematically
depicted in Figure 1.
An exciton, which is a Coulombically bound electron−hole

pair, is the primary form of the excited-state energy in the CPs
and the NCs. An exciton can be created via either optical or
electrical excitation (Figure 1a). Optical excitation occurs
through absorption of a photon, while electrical excitation
requires simultaneous injection of an electron and a hole.
Within the lifetime of an exciton, it may radiatively or
nonradiatively recombine (Figure 1b). Radiative recombination
results in emission of a photon, whereas nonradiative
recombination does not produce light but heat. Exciton
diffusion (Figure 1c) is another process that is widely observed
in the close-packed solid films of the CPs and the colloidal
NCs. In the case of CPs, exciton diffusion/migration can

happen either via exciton hopping within the delocalized
excited-state landscape of CP13 or via Förster resonance energy
transfer (FRET) between different chromophoric units of the
CP.14,15 In the colloidal NCs, exciton diffusion dominantly
takes place through long-range nonradiative energy transfer
because excitons are confined to the NCs.16,17 The exciton
diffusion length in the CPs and the NCs is typically on the
order of 10 nm.10,17 For a solar cell, attaining a longer exciton
diffusion length is desired for enhanced light-harvesting
performance.18,19 In the case of a light-emitting diode (LED),
exciton diffusion is undesired because it can cause trapping of
the excitons at the trap/defect sites (Figure 1c), causing
nonradiative recombination.

At the interfaces of materials having energetically staggered
band alignment, excitons might dissociate through charge
transfer. This process involves spatial overlap of the wave
functions between different materials that are in close proximity
(<2 nm) (Figure 1d). Thus, exciton dissociation leads to
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reactive species through formation of free charge carriers, which
finds use in photovoltaics for charge separation. On the other
hand, in electroluminescent devices, it is essential to control the
recombination zone of the excitons within which they
radiatively recombine. The management of the exciton
recombination zone can be achieved through excitation energy
transfer (Figure 1e) including FRET,20 which is a near-field
dipole−dipole coupling between the species that are in close
proximity (typically <10 nm), and Dexter energy transfer,21

which is an electron exchange interaction between two species
that are in intimate contact (<2 nm).
For the nonradiative energy-transfer mechanisms to occur,

there must be a spectral overlap between the donor emission
and the acceptor absorption to satisfy the resonance
condition.22 Additionally, Dexter energy transfer requires the
spatial overlap of the wave functions between the donor−
acceptor pair, whereas FRET does not require this because it is
a long-range process. Both nonradiative energy-transfer
mechanisms preserve the neutrality of the donor and the
acceptor materials because excitons are being transferred
instead of free carriers. The spatial extent of the colloidal
NCs and the CPs, at least in one dimension, is less than 10 nm,
making FRET a versatile and efficient tool to control the
excitons in the hybrid organic−inorganic composites. Yet, only
singlet excitons can be transferred through FRET because the
transition dipole in the donor must have a nonzero oscillator
strength. Nevertheless, energy transfer between nonemissive
triplet states can happen via Dexter energy transfer.23

Colloidal quantum dots (QDs), the NCs having three-
dimensional quantum confinement, have been shown to be
highly attractive materials for light generation, owing to their
spectrally narrow and efficient photoluminescence features.24,25

However, charge injection and transport has been severely
hindered in the solid films of these QDs due to their bulky
organic ligands and large-band-gap inorganic shells.26−28

Although it is possible to replace these bulky ligands with
shorter ones29 or with inorganic halides,30,31 these processes
mostly cause loss of photoluminescence due to poor surface
passivation and introduced surface traps. Alternatively, CPs
have been shown to exhibit electroluminescence since the late
1980s, opening up the field of organic LEDs (OLEDs).32,33 The
CPs exhibit better charge injection and transport properties as
compared to the colloidal QDs.5,26 Yet, it is more difficult to
tune the spectral emission in the CPs.34 Also, the CPs typically

have much broader spectral emission widths, limiting their
color purity in the OLEDs.35 These challenges have stimulated
the use of organic−inorganic hybrid systems to synergistically
integrate or combine CPs and QDs. The potential of the
organic−inorganic hybrids has led the scientific community to
delve deeper into their excitonic properties to tailor these
materials for optimized light-generation and light-harvesting
performance.11,26,36,37

Exciton transfer from an organic semiconductor into
colloidal QDs has been elucidated to be a favorable mechanism
to excite the QDs in the LEDs.23,38−41 Such exciton transfer via
nonradiative energy transfer has been investigated in several
CP−QD blends or hybrids by various reports40−51 and several
reviews.52−55 The QDs and CPs used in these reports are
summarized in Table 1. As one of the early reports, Anni et al.

have observed nonradiative energy transfer, which was
suggested to be FRET, in the blended CP−QD films via
time-resolved fluorescence spectroscopy, revealing the spectro-
scopic evidence of FRET from the CP into the QD.42

Previously, FRET from the organic dyes into the QDs has
not been observed, which was attributed to the considerably
faster photoluminescence lifetimes of the organic dyes.56

However, the CPs have been shown that they can be exciton

Figure 1. Excitonic processes are schematically summarized: (a) exciton formation, (b) radiative and nonradiative recombination, (c) exciton
diffusion, (d) exciton dissociation, and (e) excitation energy transfer (FRET and Dexter energy-transfer mechanisms). (HOMO: highest occupied
molecular orbital level; LUMO: lowest occupied molecular orbital level, |X1⟩ represents the exciton state, |g⟩ is the ground state.)

Table 1. List of Colloidal NCs and Conjugated Polymers
Used in Their Exciton-Transferring Blends and/or Hybrid
Composites

NC conjugated polymer ref

InAs/ZnSe (core/shell
QDs)

MEH-PPV and F6BT 57

PbS (core-only QDs) MEH-PPV and/or CN−PPP 41,43,58
CdSe (core-only QDs) OPV and OPE 45,59
CdTe (core-only QDs) PDFD (water-soluble, positively

charged)
48−50

CdSe/ZnS (core/shell
QDs)

PFH derivatives (amine
functionalized)

60

PDFC 42
PF2/6 51,61
PSF 47

CdSe/CdZnSeS/ZnS
(core/alloyed-shell QDs)

PTA−b-CAA and PTA−b-PFP
(thiol functionalized)

62,63

PF−CMSP (carboxyl
functionalized)

64
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donors for the QDs. This nonradiative energy transfer from the
CP into the QD was also verified by photoluminescence
excitation (PLE) spectroscopy.41 PLE of the QD emission was
shown to exhibit strong enhancement in the spectral range,
where the CP has strong absorption, owing to the exciton
transfer from the CPs into the QDs. Other evidence of this type
of exciton transfer was shown by the slower rise time of the
fluorescence decay in the acceptor QDs due to exciton feeding
from the CPs.46 Different from the early works, which generally
focused on blended CP−QD films, Lutich et al. have
investigated nonradiative energy transfer in an electrostatically
integrated CP−QD hybrid.48 They have demonstrated that
FRET is the dominant excitonic mechanism among others
(Dexter energy transfer and charge transfer), with an efficiency
as high as 80% despite a type-II band alignment between the
CP and the QD.48

Later, Stöferle et al. put forward that exciton diffusion is
crucially needed for nonradiative energy transfer to take place
from the CPs into the QDs.51 With the help of exciton diffusion
in the organic part, excitons would become effectively closer to
the acceptor QDs (see Figure 2a) so that nonradiative energy
transfer would be more efficient.65,66 In this aforementioned
work, exciton-diffusion-assisted exciton transfer was demon-
strated in blended CP−QD films by measuring the transfer
efficiencies as a function of temperature. At low temperatures,
exciton-transfer efficiency was found to be suppressed (see
Figure 2b) due to temperature deactivation of the exciton
diffusion in the CPs. Thus, at low temperatures, exciton

diffusion could not assist exciton transfer. However, ref 51
considered only blended CP−QD films having QD density as
low as 3 wt %. This low density was intentionally set to prevent
possible phase segregation, which is a common phenomenon in
the blended CP−QD films.26,40,62,63

At increased QD densities in a polymer matrix, the QDs will
form micron-scale aggregates in this polymer matrix. The phase
segregation is detrimental against efficient nonradiative energy
transfer because the donor CPs and the acceptor QDs are
physically separated. Eventually, crucially exciton-diffusion-
assisted exciton transfer in the CP−QD composites was
restricted with the observation only in blends incorporating
low QD density, where exciton transfer is not strong. The
interplay between exciton diffusion and exciton transfer had not
been understood in the hybrid CP−QD nanocomposites. To
this end, we have developed hybrid CP−QD nanocomposites
using functionalized CPs that have anchor groups facilitating
strong attraction to the QD surfaces; thus, these hybrids
substantially suppress phase segregation even for the QD
densities up to 80 wt %.40

Previously, different hybridization methods have been used
to integrate the QDs and the CPs together, including ligand
exchange of QDs with CPs or synthesizing QDs in a CP-based
ligand medium.55,67,68 These methods generally do not preserve
high-quality optical properties of the QDs and may cause
exciton dissociation and charge transfer due to intimate contact
between the organic and inorganic species.45 Therefore, using
core/shell QDs together with functionalized CPs having anchor

Figure 2. (a) Schematic demonstration of exciton-diffusion-assisted nonradiative energy transfer from a conjugated polymer into a colloidal QD. An
exciton generated in the disordered density of states of a conjugated polymer can diffuse via hopping with the help of activation energy (kT). Exciton
diffusion assists nonradiative energy transfer to a QD from the conjugated polymer. (b) Temperature-dependent nonradiative energy-transfer
efficiencies in the blended CP−QD films having a QD density of 3 wt %. Adapted with permission from ref 51. Copyright 2009, American Chemical
Society.

Figure 3. Nonradiative energy-transfer efficiencies as a function of temperature for (a) functionalized CP−QD hybrid and (b) nonfunctionalized
CP−QD blended films at low (3 wt %) and high (45 wt %) QD densities within in the polymer matrix. Reproduced from ref 40 with permission
from The Royal Society of Chemistry.
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groups stands out as an attractive route to boost exciton
transfer in the hybrids while preserving the favorable optical
properties of the QDs. To date, generally amine,60 carboxyl,40

and thiol62,63 groups (see Table 1) have been used in the
functionalized CPs as the anchor groups. This type of
hybridization will be promising for future hybrid organic−
inorganic optoelectronic systems.
In our previous work employing hybrids of the functionalized

CPs and the QDs, we achieved phase-segregation free hybrids
having QD densities up to 80 wt %.40 By this means,
nonradiative energy transfer from the CPs into the QDs was
shown to reach efficiencies as high as 80%, which is a record
high in the hybrid CP−QD films. Furthermore, we have studied
nonradiative energy transfer in these hybrid CP−QD nano-
composites as a function of temperature. For this, in the
hybrids, we investigated two different QD densities, low (3 wt
%) and high (45 wt %). Also, as a negative control group, we
used another CP, which shares a similar polymer backbone but
does not have any functional anchor group. These composites
were dubbed as blended CP−QD films, in which phase
segregation would be unpreventable. Using time-resolved
fluorescence spectroscopy, we calculated nonradiative energy-
transfer efficiencies in the hybrid and blended films, as shown in
Figure 3a and b, respectively. In the case of low QD density in
the hybrid and the blend, exciton-transfer efficiencies were
observed to considerably decrease as the temperature was
decreased, as was previously observed by Stöferle et al.51 This
suggests that exciton diffusion assistance is crucial for the low
QD densities in the CP−QD composites, whether it is hybrid
or a blend.
In the case of high QD density, however, we observe a sharp

difference in temperature-dependent exciton-transfer efficien-
cies between the hybrid and the blend. For the hybrid film, the
temperature-dependent exciton transfer is significantly reduced
with efficiencies in the range of 40−50% as a function of
temperature (see Figure 3a). On the other, for the blended film,
energy-transfer efficiencies were found to change noticeably
(from 40 to 10%) in the same temperature range. These
contrasting observations suggest that nonradiative energy
transfer in the hybrid films incorporating high QD density do
not crucially require exciton diffusion assistance. Most of the
excitons are transferred directly into the QDs without the
assistance of exciton diffusion. However, in the blended films
having high QD density, exciton diffusion assistance is still
needed due to phase segregation between the CP and the QDs,
creating a large effective donor−acceptor distance.
To further elucidate the interplay between exciton diffusion

and exciton transfer in the hybrid CP−QD nanocomposites, we

have employed a model that takes into account exciton
diffusion assistance into the donor fluorescence decay kinetics
as suggested by Gösele et al.,69 similar to the Yokota-Tanimoto
model.51,66 To match the experimental exciton-transfer rates in
the hybrid films, exciton diffusion coefficients were predicted by
the model, as shown in Figure 4a. In the case of low QD
density in the hybrid, the exciton diffusion coefficient was
found to be ∼1750 nm2/ns at room temperature, which is in
good agreement with the previously reported diffusion
coefficient (1440 nm2/ns) for a similar conjugated polymer.70

As the temperature is decreased, the diffusion coefficient is
observed to decrease and is severely suppressed below 150 K.
There might be a phase change in the CP below this
temperature, restricting the exciton diffusion, as observed
before for a similar type of conjugated polymers.51,66

In the case of high QD density incorporating hybrid, the
exciton diffusion coefficient was found to be ∼375 nm2/ns at
room temperature, which is almost an order of magnitude
lower as compared to that in the hybrid having low QD density.
Therefore, exciton diffusion is significantly slowed down in the
hybrids of high QD density. We attribute this impeded exciton
diffusion to the fact that two different exciton diffusion
mechanisms exist in the conjugated polymers, fast interchain
and slow intrachain exciton diffusion, as was previously
revealed.14,71 By introducing a large number of QDs into the
polymer, one would expect to suppress fast interchain exciton
diffusion due to the increased chain-to-chain distance in the
presence of the incorporated QDs. Previously, intrachain
exciton diffusion was also found to be an order of magnitude
slower as compared to the interchain exciton diffusion, which is
also in good quantitative agreement with the observation of
slowing exciton diffusion.71

Furthermore, we calculated exciton diffusion lengths in the
CP−QD hybrids. The hybrid having low QD density exhibited
an exciton diffusion length of ∼15 nm at room temperature,
which represents a good match with the previous literature.72

As temperature is decreased, the exciton diffusion length
decreases and becomes very short below 150 K due to
temperature deactivation of the exciton diffusion and possible
phase change in the polymer.51,66 On the other hand, the
hybrid having high QD density exhibited much a smaller
exciton diffusion length of ∼2.5 nm at room temperature,
which is 6-fold smaller than that observed in the hybrids having
low QD density. Thus, the exciton diffusion length is decreased
with increasing QD density in the hybrids. The observed
exciton diffusion length of 2.5 nm in the high QD density
hybrid agrees well with the fast downhill exciton diffusion in the
conjugated polymers.73 These observations support that

Figure 4. Temperature-dependent (a) exciton diffusion coefficient and (b) exciton diffusion length in the functionalized CP when the polymer
matrix incorporates low (3 wt %) and high (45 wt %) density QDs. Reproduced from ref 40 with permission from The Royal Society of Chemistry.
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exciton diffusion assistance to nonradiative energy transfer in
the CP−QD hybrids is not crucial anymore if high QD density
is used in the hybrid. This shows a major characteristic
difference as compared to the blended CP−QD films, where
exciton diffusion assistance is always crucial. Thus, a direct
exciton-transfer channel, which would not need exciton
diffusion assistance, prevails in the hybrid CP−QD nano-
composites, as observed by temperature-insensitive exciton
transfer and suppressed exciton diffusion in the hybrid CP−QD
nanocomposites.

An independent support to this view comes from another
class of hybrid CP−QD nanocomposites that have been
constructed via self-assembling monolayers of positively
charged semiconducting CP and negatively charged QDs in
an alternating order (using layer-by-layer assembly).49 The
electrostatically integrated organic−inorganic hybrids (for
which the QD density was estimated to be 18 wt %) also
exhibited FRET efficiencies that are insensitive to temperature.
Again, suppression of the exciton diffusion in the CP was
observed indirectly through suppressed defect emission in the
CPs.49 Figure 5 schematically illustrates the fundamental
interplay between the exciton diffusion and the exciton transfer
in the blended and the hybrid composites.
Additionally, the ligands of the QDs play an important role

for FRET efficiencies in the organic−inorganic nanocompo-
sites. Previously, it has been shown that PbS QDs with shorter
ligands could enhance FRET efficiencies up to 3-folds in their
blended composites with MEH-PPV.41 Therefore, shorter
ligands can be employed to facilitate faster and more efficient
nonradiative energy transfer because the donor−acceptor
separation can be effectively made shorter. However, recent
studies have shown that the morphology of the ligands on the
QD surfaces can also be critical for the excitonic interactions.
The nanoscale morphology of the ligands (conformation,

bundling, interpenetration, etc.) on the surface of the CdSe
QDs has been elucidated to strongly suppress the charge
transfer in the CP−QD composites.74

LEDs that combine the conjugated polymers and the
colloidal QDs together as the emissive layers have been
under research for the past 2 decades.11,40,47,57,58,63,75,76 Colvin
et al. first demonstrated that it is possible to achieve
electroluminescence from the QDs using the composites of
the QDs incorporated into the conjugated polymer.11 Such
LEDs having blended CP−QD films have been shown to be
promising for near-infrared (NIR) and infrared (IR)
emission.57,75 In these blended LEDs, excitation of the QDs
via nonradiative energy transfer from the CP has been
suggested to be dominant pumping mechanism as compared
to charge injection pumping. However, these LEDs based on
blended polymer−QD films always exhibit mixed emission
from both the CP and the QD in their electroluminescence
spectra due to incomplete exciton transfer from the
CPs.11,47,57,76 The mixed emission has been favorably utilized
for white light generation in the blended CP−QD films.77,78

Yet, complete exciton transfer is highly desired to achieve
spectrally pure LEDs (i.e., with color purity), which can be
realized only using hybrid CP−QD films having high QD
density.40 Previously, ref 62 also demonstrated CP−QD
hybrids exhibiting dominant QD emission (see Figure 6c for
hybrid LEDs having increasing QD loading in the hybrids from
30 wt % for H1 up to 70 wt % for H5) in the
electroluminescence spectrum of the hybrid LEDs owing to
the suppressed phase segregation through anchor groups in the
polymer (see Figure 6a and b).
In our previous work, we have demonstrated excitonically

driven hybrid LEDs, dubbed as XLEDs,40 based on the
functionalized CP−QD hybrids employing QD densities larger
than 70 wt %. This ensures highly efficient direct transfer of the
excitons in the hybrid due to absence of phase segregation.
Figure 6d shows the electroluminescence spectra of the XLEDs
having different color-emitting QDs. Also, XLEDs offer high
color purity with dominant QD emission at increased QD
density in the hybrid owing to the boosted exciton transfer
(Figure 6e). Compared to their control group LEDs using only
the QDs in the emissive layer, XLEDs exhibit a significant
enhancement in external quantum efficiency (an order of
magnitude improvement in this implementation here).40 These
reports suggest that it is possible to combine the efficient

Exciton diffusion is not crucially
needed in high QD density

hybrids, in contrast to blends and
low QD density hybrids. A direct
exciton-transfer channel can pre-

vail in the CP−QD hybrids.

Figure 5. Exciton-diffusion-assisted exciton-transfer mechanism in (a) a low density QD incorporating hybrid or blend film and (b) a high density
QD incorporating blended film. Direct exciton-transfer mechanism in (c) a high density QD incorporating hybrid. Reproduced from ref 40 with
permission from The Royal Society of Chemistry.
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charge injection through the CPs and almost complete exciton
transfer into the QDs using tailored hybrid organic−inorganic
excitonic nanocomposites.
Here, it is also worth noting that, although excitonic

pumping of the QDs is very useful toward enhanced hybrid
LEDs, there is a fundamental limitation arising due to
nonemissive triplet states in the fluorescent CPs. According
to spin statistics, 3/4 of the excitons formed in a fluorescent
semiconductor organic material through electrical excitation
will be triplet-state excitons, which are spin-forbidden non-
emissive states.79 This phenomenon restricts the performance
of the LEDs employing fluorescent organic materials.80 It is not
possible to harvest triplet-state excitons by transferring them to
the QDs via FRET because triplet-state excitons have zero
oscillator strength. An alternative method is using phosphor-
escent organic materials, where triplet states become emissive
due to strong spin−orbit coupling.79 In such phosphorescent
organic media, nonradiative energy transfer becomes viable
too.81,82

In our recent work, we have shown that exciton transfer from
phosphorescent small organic molecules into core/shell QDs
can enhance the fluorescence of the QDs by 3-fold, as revealed
by time-resolved fluorescence and PLE spectroscopy.82 We
have also employed a similar hybrid phosphorescent organic−
inorganic composite to harvest the triplet-state excitons in the
hybrid LEDs.83 This was enabled by a smart design of the QD
and phosphorescent organic-molecule-doped electron-transport
layers that led us to achieve highly color pure LEDs with
external quantum efficiencies as high as 2.1%, resulting in an
enhancement factor over 4-fold as compared to the LEDs that
do not harvest the triplet excitons.83 This type of phosphor-
escent organic−inorganic hybrids exhibiting strong exciton
transfer will be the key to energy-efficient hybrid light

generation through rational design and optimization of the
hybrid composites.
Another means to harness triplet-state excitons has been

recently shown using Dexter energy transfer. Organic molecules
of tetracene and pentacene were shown to transfer their
nonemissive triplet-state excitons into NIR-emitting PbS or
PbSe QDs with an efficiency as high as 90%.84,85 Furthermore,
this energy transfer was shown to be boosted via singlet exciton
fission, which results in formation of two triplet excitons from a
singlet exciton. This new route of harnessing the triplet-state
excitons might advance both light-generation and light-
harvesting performance in the hybrid organic−inorganic
systems to address the efficiency challenge arising due to
nonemissive triplet states in the organic semiconductors.
Organic−inorganic CP−QD composites are also attractive

for light-harvesting applications. The observation of efficient
exciton dissociation and charge separation at the CP−QD
interfaces26 had strongly suggested that these hybrid material
systems would be promising for photovoltaics. The demon-
stration of the first hybrid CP−QD solar cells came after
following the early studies on the charge separation in the CP−
QD hybrids.37 Since then, in the past decade, there have been
various efforts to improve the performance of the hybrid solar
cells, which are summarized in recent specialized reviews.86,87

In this field, the current research generally aims at achieving a
fine control over the nanoscale morphology and nanoparticle
surface chemistry to boost the charge generation and transport
for a maximized solar cell performance. To this end, hybrids of
CdS QDs and PH3T nanowires have been introduced, which
advantageously benefit from the elongated morphology of the
nanowires for enhanced photocurrent densities.88 A similar
approach has been also pursued by using the nanorods and the
nanowires of CdSe and CdS NCs.89 The underpinning goal in

Figure 6. (a) Hybrid CP−QD and (b) blended CP−QD films. (c) Electroluminescence spectra of the hybrid LEDs (H1−H5) demonstrating only
green QD emission (the QD loading concentration increases from 30 to 70 wt % from H1 to H5). (d) Excitonically driven LEDs (XLEDs) using
hybrid CP−QD films incorporating green-, yellow-, and red-emitting QDs. (e) XLEDs with increasing QD density in the hybrid CP−QD film
showing almost complete QD emission in the electroluminescence. (a−c) Adapted with permission from ref 62, Copyright 2009, John Wiley &
Sons, Inc.
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such morphologically controlled hybrids is to realize domain
sizes that are comparable to the exciton diffusion lengths (∼10
nm) in order to maximize the charge-generation efficiency.
Recently, Z. Liu et al. have shown that vertical phase
segregation can be also favorably used in the organic−inorganic
composites of PbSeS QDs and PDTPBT hole-accepting CPs.90

In contrast to the excitonically driven hybrid LEDs, where
phase segregation was shown to be highly detrimental for the
color purity of the electroluminescence,40 the hybrids of PbSeS
QDs−PDTPBT CPs can simultaneously combine the ultrafast
charge separation and efficient charge transport through vertical
phase segregation.90 The device architecture together with the
proposed vertical-phase-separated morphology is shown in
Figure 7. These vertically phase-separated solar cells have

achieved record-high power conversion efficiencies (as high as
5.5%).90 In addition to the controlled morphology in the hybrid
nanocomposites, control of the surface chemistry of the NCs
stands out as an effective means for controlling the exciton
dissociation and charge transfer. To date, bundling of the
ligands on the QD surfaces has been shown to effectively tailor
the electron transfer from the QDs into the CPs.74 Similarly,
the shell thickness of the core/shell QDs has been shown to be
essential for the optimization of the charge-transfer processes in
the composites of CdSe/ZnS QDs−FHQ CPs91 and PbS
QDs−PCPDTBT CPs.92

Alternative to the CPs, conjugated polymer nanoparticles
(CPNs) have emerged in the past decade as attractive organic
semiconductors for various applications owing to their large
absorption cross section and high photoluminescence effi-
ciency.93 The CPNs are also promising candidates for the
hybrid organic−inorganic composites for enhanced light-
generation and -harvesting purposes. Recent research efforts
indicate that the hybrids of the CPNs incorporated with the
CdTe QDs through electrostatic interactions can realize FRET
efficiencies as high as 73%.94 Exciton diffusion in the CPNs has
been a subject of various recent studies. It has been shown that
exciton diffusion in the CPNs is comparable to that of their CP
counterparts with diffusion lengths of ∼10−12 nm.95,96

However, the temperature dependence of the exciton diffusion
in the CPNs still has to be understood. In the near-future,
CPN-based hybrids may become more interesting for highly
excitonic hybrid nanocomposites.97

In conclusion, controlling excitonic processes is essential in
the organic−inorganic nanocomposites to use their full
potential in light-generation and light-harvesting applications.
To this end, we have presented the fundamental excitonic
processes in the composite organic−inorganic systems of
colloidal semiconductor NCs. We have critically highlighted the
recent contributions on the understanding of the interplay
between the exciton diffusion and exciton transfer in the hybrid
nanocomposites. This comprehension will be important for
designing excitonically driven hybrid LEDs for ultraefficient
performance. Furthermore, we have indentified the challenge of
the limited triplet-state harvesting in the organic−inorganic
hybrids and highlighted the ongoing research with a future
direction.
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