538 research outputs found

    Far-Infrared Excitations below the Kohn Mode: Internal Motion in a Quantum Dot

    Full text link
    We have investigated the far-infrared response of quantum dots in modulation doped GaAs heterostructures. We observe novel modes at frequencies below the center-of-mass Kohn mode. Comparison with Hartree-RPA calculations show that these modes arise from the flattened potential in our field-effect confined quantum dots. They reflect pronounced relative motion of the charge density with respect to the center-of-mass.Comment: 8 pages, LaTeX with integrated 6 PostScript figure

    Collective excitations in Quantum Dot

    Full text link
    We investigate different types of collective excitations in a quantum dot containing finite number of electrons at zero magnetic field. To estimate the excitation energies analytically we follow the energy weighted sum-rule approach. We consider the most general multipole excitation with angular momentum l, and the breathing mode excitation (monopole excitation) of a large quantum dot, for three different types of effective electron-electron interaction. These are the logarithmic interaction, the short range pseudopotential and the coulomb interaction. The ground state density of the many-body system is calculated within Thomas-Fermi approximation. The analytical results for the collective excitation energies and their dependence on the system size and other external parameters are discussed in detail.Comment: Tex file, 4 figures ps file

    Gauge invariant grid discretization of Schr\"odinger equation

    Full text link
    Using the Wilson formulation of lattice gauge theories, a gauge invariant grid discretization of a one-particle Hamiltonian in the presence of an external electromagnetic field is proposed. This Hamiltonian is compared both with that obtained by a straightforward discretization of the continuous Hamiltonian by means of balanced difference methods, and with a tight-binding Hamiltonian. The proposed Hamiltonian and the balanced difference one are used to compute the energy spectrum of a charged particle in a two-dimensional parabolic potential in the presence of a perpendicular, constant magnetic field. With this example we point out how a "naive" discretization gives rise to an explicit breaking of the gauge invariance and to large errors in the computed eigenvalues and corresponding probability densities; in particular, the error on the eigenfunctions may lead to very poor estimates of the mean values of some relevant physical quantities on the corresponding states. On the contrary, the proposed discretized Hamiltonian allows a reliable computation of both the energy spectrum and the probability densities.Comment: 7 pages, 4 figures, discussion about tight-binding Hamiltonians adde

    Magnetoplasmon excitations in arrays of circular and noncircular quantum dots

    Full text link
    We have investigated the magnetoplasmon excitations in arrays of circular and noncircular quantum dots within the Thomas-Fermi-Dirac-von Weizs\"acker approximation. Deviations from the ideal collective excitations of isolated parabolically confined electrons arise from local perturbations of the confining potential as well as interdot Coulomb interactions. The latter are unimportant unless the interdot separations are of the order of the size of the dots. Local perturbations such as radial anharmonicity and noncircular symmetry lead to clear signatures of the violation of the generalized Kohn theorem. In particular, the reduction of the local symmetry from SO(2) to C4C_4 results in a resonant coupling of different modes and an observable anticrossing behaviour in the power absorption spectrum. Our results are in good agreement with recent far-infrared (FIR) transmission experiments.Comment: 25 pages, 6 figures, typeset in RevTe

    Magnetoplasmon excitations in an array of periodically modulated quantum wires

    Full text link
    Motivated by the recent experiment of Hochgraefe et al., we have investigated the magnetoplasmon excitations in a periodic array of quantum wires with a periodic modulation along the wire direction. The equilibrium and dynamic properties of the system are treated self-consistently within the Thomas-Fermi-Dirac-von Weizsaecker approximation. A calculation of the dynamical response of the system to a far-infrared radiation field reveals a resonant anticrossing between the Kohn mode and a finite-wavevector longitudinal excitation which is induced by the density modulation along the wires. Our theoretical calculations are found to be in excellent agreement with experiment.Comment: 9 pages, 8 figure

    Collective charge-density excitations of non-circular quantum dots in a magnetic field

    Get PDF
    Recent photoabsorption measurements have revealed a rich fine structure in the collective charge-density excitation spectrum of few-electron quantum dots in the presence of magnetic fields. We have performed systematic computational studies of the far-infrared density response of quantum dots, using time-dependent density-functional theory in the linear regime and treating the dots as two-dimensional disks. It turns out that the main characteristics observed in the experiment can be understood in terms of the electronic shell structure of the quantum dots. However, new features arise if a breaking of the circular symmetry of the dots is allowed, leading to an improved description of the experimental results.Comment: 18 pages, 5 figures, submitted to Phys. Rev.

    Plasmon-pole approximation for semiconductor quantum wire electrons

    Full text link
    We develop the plasmon-pole approximation for an interacting electron gas confined in a semiconductor quantum wire. We argue that the plasmon-pole approximation becomes a more accurate approach in quantum wire systems than in higher dimensional systems because of severe phase-space restrictions on particle-hole excitations in one dimension. As examples, we use the plasmon-pole approximation to calculate the electron self-energy due to the Coulomb interaction and the hot-electron energy relaxation rate due to LO-phonon emission in GaAs quantum wires. We find that the plasmon-pole approximation works extremely well as compared with more complete many-body calculations.Comment: 16 pages, RevTex, figures included. Also available at http://www-cmg.physics.umd.edu/~lzheng

    Inelastic Coulomb scattering rates due to acoustic and optical plasmon modes in coupled quantum wires

    Full text link
    We report a theoretical study on the inelastic Coulomb scattering rate of an injected electron in two coupled quantum wires in quasi-one-dimensional doped semiconductors. Two peaks appear in the scattering spectrum due to the optical and the acoustic plasmon scattering in the system. We find that the scattering rate due to the optical plasmon mode is similar to that in a single wire but the acoustic plasmon scattering depends crucially on its dispersion relation at small qq. Furthermore, the effects of tunneling between the two wires are studied on the inelastic Coulomb scattering rate. We show that a weak tunneling can strongly affect the acoustic plasmon scattering.Comment: 6 Postscript figure

    Far-infrared edge modes in quantum dots

    Get PDF
    We have investigated edge modes of different multipolarity sustained by quantum dots submitted to external magnetic fields. We present a microscopic description based on a variational solution of the equation of motion for any axially symmetric confining potential and multipole mode. Numerical results for dots with different number of electrons whose ground-state is described within a local Current Density Functional Theory are discussed. Two sum rules, which are exact within this theory, are derived. In the limit of a large neutral dot at B=0, we have shown that the classical hydrodynamic dispersion law for edge waves \omega(q) \sim \sqrt{q \ln (q_0/q)} holds when quantum and finite size effects are taken into account.Comment: We have changed some figures as well as a part of the tex

    Far-infrared edge modes in quantum dots

    Get PDF
    We have investigated edge modes of different multipolarity sustained by quantum dots submitted to external magnetic fields. We present a microscopic description based on a variational solution of the equation of motion for any axially symmetric confining potential and multipole mode. Numerical results for dots with different number of electrons whose ground-state is described within a local Current Density Functional Theory are discussed. Two sum rules, which are exact within this theory, are derived. In the limit of a large neutral dot at B=0, we have shown that the classical hydrodynamic dispersion law for edge waves \omega(q) \sim \sqrt{q \ln (q_0/q)} holds when quantum and finite size effects are taken into account.Comment: We have changed some figures as well as a part of the tex
    • …
    corecore