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Collective charge-density excitations of noncircular quantum dots in a magnetic field

C. A. Ullrich and G. Vignale
Department of Physics, University of Missouri, Columbia, Missouri 65211
(Received 13 July 1999

Recent photoabsorption measurements have revealed a rich fine structure in the collective charge-density
excitation spectrum of few-electron quantum dots in the presence of magnetic fields. We have performed
systematic computational studies of the far-infrared density response of quantum dots, using time-dependent
density-functional theory in the linear regime and treating the dots as two-dimensional disks. It turns out that
the main characteristics observed in the experiment can be understood in terms of the electronic shell structure
of the quantum dots. However, additional features arise if a breaking of the circular symmetry of the dots is
allowed, leading to an improved description of the experimental results.

I. INTRODUCTION experiments on self-assembled InAs quantum dots per-
formed by Kotthaus and co-workers in Muni¢hH! The ex-
The electronic structure and dynamics of quantum dotgeriments use a combination iof situ capacitance spectros-
have been a subject of intense study in recent fifnEre-  copy and FIR absorption spectroscopy to probe the ground
quently one makes the simplifying assumption that the elecstate and collective charge-density excitations as a function
trons in quantum dots form a two-dimensional system conof the electron number per dot<IN<6. ForN=1 and 2
fined by a parabolic potential of circular symmetry. Theone finds the well-known two-mode spectrum described by
electronic ground state can then be found either through dithe simple formula
agonalization schemes or by using mean-field approaches 5
such as Hartree theory or density-functional theory. The 2 Wc O¢
former treatment is computationally much more demanding, ®+="\ wpt Ti?’ @)
and has so far only been used to describe few-electron sys-
tems, whereas the latter approach has been applied to eléthere o is the characteristic frequency associated with a
tron numbers of order 100. In either case, however, one findgarabolic confinement potential, and=eB/m*c is the cy-
that the main features observed in the experinienth as clotron frequency for particles of chargeand massn* in a
effects related to the electronic shell strucjuaee well re- magnetic fieldB. However, forN>2 the authors of Refs. 9
produced. and 10 detected a much richer FIR spectrum:dhemode is
The model of a parabolic circular quantum dot is of observed to split up intéhree subpeakgsee Fig. 3 of Ref.
course an idealization. It was already recognized in the earl§)-
1990s that explaining certain experimental features requires The authors argued within a simple picture of noninter-
including some deviation from parabolicity of the confining acting particles that the observed splitting of the mode is
potential. A first study of this kind was performed by Broido caused by the nonparabolicity of the confining potential of
et al,®> who considered the ground state and far-infrarecthe quantum dots. Since fot= 3,4, and 5 the shell is only
(FIR) response of up to 30 electrons confined in a circulapartly filled, the system can perform transitions of the
quantum disk of radius 100 nm. Their approach, as well as a»p andp—d types, which have slightly different energies,
similar one by Gudmundsson and Gerhdtegs based on a in contrast with the strictly parabolic case. This simple ex-
Hartree plus random-phase-approximation description of thelanation, however, can only account for a twofold splitting
electrons. Both studies showed that a correction to the coref the w . mode. It is then further argued that the observed
fining potential toward the edge of the dot that makes itthird (somewhat weakegrsignal is caused by effects related
steeper than the parabolic potential leads to a blueshift of the® electron-electron interaction.
collective dipole modes that increases with the number It is the purpose of the present paper to provide a theoret-
electrons in the dot. In addition, it was found in Ref. 4 thatical explanation of the threefold splitting of the, mode
one has to include a deviation from circular symmetry inobserved in Ref. 9. Our approach is based on density-
order to explain the anticrossing behavior in the FIR spectrdunctional theory for the ground state and linear response in
observed in the experiments by Dene¢lal® These findings the presence of a magnetic field. It will turn out in the fol-
were supported by an exact diagonalization study of quanlowing that including electron-electron interaction effects
tum dot helium by Pfannkuche and Gerhafdmnd further alone is not sufficient. Instead, the presence of the third sub-
elaborated by Ye and Zarembasing a hydrodynamic ap- peak is explained by a combination of the nonparabolicity
proach. We finally mention a very recent study by Hiroseplus breaking of the circular symmetry of the confining po-
and Wingreef that used spin-density-functional theory to tential.
describe the electronic shell structure and calculate addition The paper is organized as follows: in Sec. Il, we shall
energies in elliptic dots. introduce our model for the quantum dots, a two-dimensional
The present work was motivated by a recent series oflisk, and we shall present the theoretical methods for de-
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scribing the electronic ground state and dynamics. In Sec. N (r)=n,(r,e)
[ll, we then discuss our numerical results, and Sec. IV gives
our conclusions.

:; fjcr|l;bj0'(r)|2

Il. FORMAL FRAMEWORK ) ,
_ =2 fiodiia(n) djire(r)e~10e, (6)
A. Ground-state calculation ji’

The electronic ground state of a system in the presence afheref;, denotes occupation numbers of the orbitals. In the
magnetic fields is described by current-density-functionafollowing, all calculations will be performed at a small but
theory. The general formalism was developed by Vignaléfinite temperatureT=4.2 K, in order to avoid convergence
and Rasolt? and to date there exist several applications toproblems at small magnetic fields. The occupation numbers
quantum doté3**Here we want to generalize the formalism, are then given by the thermal distribution
which originally was developed for circular quantum dots, to

describe noncircular systems. (= 1
In the following, we shall make our lives a little easier, jo— o= |’ )
especially in view of the linear response calculations later on, 1+ exp{ T
B

and neglect the dependence of the exchange-correla@n
energyE,. on the current density,,. This dependence is and the chemical potentigt is fixed through the relation
known to cause only a small effect in the electronic grounds;,f;,=N. Next the confining potential of the dot is ex-
state of quantum dots. The xc vector potential then drops oupanded as

and the Kohn-Sham equation as derived in Ref. 12 becomes

VaolT19)= 2 Vaory(r)e ™%, ®)
v? ie e?A2,(r)
om* Zm*C[Aexl(r)'V+V'Aexl(r)]+ om* c2 Similar expansions are made for the Hartree and xc poten-
tials. For the dot potential, the angular components

. =¢e i 1 (2= .
+Vext(r(r)+VH(r)+VXC(r(r) (//](r(r) E]U'lrlfj(r(r)! Vdot,l(r):ZJ’oz d(Pell‘deot(r!()D) (9)

2 . . .

@ in general have to be obtained through straightforward nu-
merical integration, and similarly for the xc potentiédr the
where as usualey, andAey denote the external scalar and latter we use the local-density approximation in the param-

vector potentials and(r) andv,,(r) are the Hartree and oy, ati0n of Tanatar and Ceperf8y For the Hartree poten-
Xc potentials. In the following, the basic assumption is thattial one finds

the quantum dots can be treated as two-dimensional systems.
We then use polar coordinates and write the external poten-
tial as a sum of the bare potential of the quantum dot plus the vy, (r)= 2me* 2, >

Zeeman term: o jnn’
n—n’=|

1 xfocr’dr’ no(F ) din o (r )1 (r,r"), (10
Veur (16) Vol T )+ 0% ueBo. (3 o 197 Pinalr ) o (rONE ), (10
wheree* is the effective electronic charge, and ther,r')
Here ug=eh/2m, o==*1, and the specific form of involve integrals over Bessel functions:
Vol F-¢) will be discussed in Sec. 11 C below. In turn, the

ternal vect tential is given b , * ,
external vector potential is given by (o1 ):fo dgd(andi(qr). (1)
Al @)= Eré 4) I/(r,r") can be expressed in terms of hypergeometric func-
et P)= 5 % tions that can be further reduced to complete elliptic integrals

(see Ref. 3 for the cade=1). Inserting everything into the

corresponding to a uniform magnetic fisdcperpendicular to  Kohn-Sham equation, we finally obtain
the dot. Next we expand the Kohn-Sham orbitals in polar
coordinates as [ 1

2m*

dr2 r dr r2

d2 1d 1?2 eIB+e282r2
2m*c  8m*c?

. - . —ile 1
ho)= 3 Bio(r)e © +§g*uBBa]¢j|0(r)+;[vdot,k(r)+vH,k<r>

where theg; ,(r) are real. The spin density is then given by T Vico k(N 1Pj1 —kol1) = €j5Bji (1) (12
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Equation(12) couples the angular components of the Kohn-where we define
Sham orbitalg5). In practice, we of course limit the expan-

sions of the orbitals and potentials to a finite number of ) = Dy (1) Dy (r')
components—L, ... l,... L, whereL of the order 5 is Xirro (T ’w):% (fk"_fi”)ska—sja+w+in’ (20
sufficient to give convergence for the cases under study. So- '

lution of the Kohn-Sham equatiaii2) is then accomplished With

by discretization on a logarithmic radial mesh wibkyq

~100 grid points. Oy ()= 2 (1) byr(r). (21)
11"
I'—1=L
fPr the xc kernel we use the adiabatic local-density approxi-

B. Linear response

The FIR absorption spectra as measured in Refs. 9 and

are proportional to the photoabsorption cross section mation (ALDA)
4w f r'r” )_ dzexc S rr_r/r)
o(0)=—— Im a(w), (13) oo (11 0) =40 dn (
C o T no(r’)
where the dipole polarizability with respect to, say, the N L
axis, =8(r'=1") 2 fromodr)E™
m'=-N

(22

wheree,. is the xc energy density of the homogeneous two-
is obtained from the linear density respomsgr,») of the  dimensional electron gas,and
guantum dots to an external field of the form

a(w)=—é—i f d3rxny(r,w), (14

2
, d%y¢

1 (2=
eEOX (15) fXC,m’Uf(r ):EJ’O d(P dno.dn,-
2 1

e”ime’ (23

no(r’)

vi(r,w)=
) . o In the ALDA, the xc kernel is frequency independent and
whereE, is the amplitude of the electric field strength. In yeq| (for a recent discussion of alternative expressions for
order to calculaten;(r,w) =2 ,n1,(r,0), we have to solve {  see Ref. 16 The imaginary part of the Kohn-Sham
the linear spin-density response equation, which reads as folesponse functiolil7) thus has to be put in by hand. In the
lows: following, we choose a value aj=0.1 meV, corresponding
to about 0.1-1% of the excitation energies under study.

nla(f,w)=f dSF'X(r(f,f',w)IVla(r',w) Inserting everything into the response equatitf), we

obtain
* 2 o0 N
e ! ’ !
+2 f d3r”(| — +fxm<r',r",w>) nlh,(r,w):fo dre’ 20 xiro(rr @)V (1, o)
T r—r |"==N
2 %2 * It ” "en
anf(r”,w)], (16 +472e* ZT fo dr'r fo dr'r
N
i.e., we have to solve two coupled integral equationsnfgr , " A
andn;; . The Kohn-Sham response function XI’;N X (0T @)y (r o)l (1)
- ¢:a(r)¢ja(r)¢rg(r,)wko(r,) * N
AN w)= fro—fio) . +2 f dr'r’ r(r,r’,
XolTut @)= 2 (=)= ) > | I,mE?Nx” (r.r',w)
17 , ,
.. . . . XNimA1" @) fye (I’fm)m-(r ). (24)
is diagonal in the spins. Let us now expand the density re- ’
sponse as Solving for the density responsen;(r,w)=ny(r,w)
+n4,(r,) for a given value ofw thus requires inversion of
N " a complex matrix of dimension Nig(2N+1)= 1400 (for
Nio(r,@)= 2 Nipy(r,w)e, (18)  N=3 andN,=100), which poses no problem in practice.
n=-N g

where in practice of coursd<L. Inserting the form(5) of C. External potential

the Kohn-Sham orbitals, the response function is set up in

the following way: Let us now turn to the specific form of the bare confining

potential of the quantum dot.(r,¢), used to construct the
N electronic ground state in Sec. Il A. First of all, we restrict
Xo(r, I 0)= 2 xuo(r.r w)el'®e ¢’ (19)  ourselves to considering only potentials that have inversion
II'=-N symmetry. In other words, expansid8) of vy.(r,¢) con-
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tains only angular componentsg,(r) with evenl. We can ~ parametrized aR(¢). Once a particular form foR(¢) has
then replacee'¢ in Eq. (9) by cos{¢). Furthermore, to re- been chosen, the associated electrostatic potential is calcu-
duce the computational effort we shall restrict the valuels of lated as
tol=0,=2, and=*4. ,
We first consider the circularly symmetric part of the con- _T k2 T [ReD
fining potential,vyo r). This component describes the de- Vaol I @) =Vo—e mfo de fo
gree of nonparabolicity of our quantum dot. Pfannkuche and
Gerhard8 assumed a form r'dr’

X . (29
- Nr2+r'2=2rr’ cogo—¢')
Vo d )= 7(m§r2+ wir?), 25 where now
wherew;<wq. A different approach was chosen by Broido ~ %2 fzw , ,
et al® they constructed 4o (1) as the electrostatic potential Vo=e& s 0 deR(¢). (39

associated with a two-dimensional jellium disk of radRs

and uniform positive areal charge density . Their result ~Ther’ integral in Eq.(29) can be performed analytically,
was and the remaining integration over has to be done numeri-

cally for generalR(¢’). If R(¢')=const, one recovers the
previous resulfEgs.(26)]. The next step is then to construct
) , r<Rr, the angular componentg,.,(r) using Eq.(9), which in gen-
eral requires a second straightforward numerical integration.
The larger behavior of the dot potentidR9) is found to
be

r
R

R R2
E(F)‘ =
(26)

wherevo,=2me*2n R. HereK and E denote complete el- ; ;
A : - ; . Th hat for | I
liptic integrals of the first and second kinds. It is easy to se independent ofp Is means that for large distances only

that Eq.(25) is the smallr expansion of Eq(26), identifying e =0~component Of’dm(r""’) survives(approaching t.he-
the coefficients as constantvy), and the highet-components go to zero. This is
again in contrast with the forr{28) for the noncircular com-
ponents of the dot potential, whidlunphysically keep in-

Viord ) =v0—4e*2n+RE(

Vaord ) =Vo—4e*2n,r
- e*2 4 2
Vaol T—=%,¢)=Vo~ —5— | de'R(¢")?, (3D

* 2
wg:we n+ creasing with distance. As noted before in the case of the
m*R circular dot, this difference is not expected to have a large
(27) impact on the electronic ground state, but it may become
3me*2n important for higher excitations. We therefore conclude that
w? - in general it is preferable to work with dot potentials con-

C16m*RE structed according to Eq29), thus avoiding effects caused

o . by an unphysical behavior in the largeegion.
The main difference between the two forms\qf,(r) is

that(25) grows ag * for larger, whereag26) approaches the
constantvy as 1f. This difference is of less importance for
the electronic ground state, since the two potentials are very The experiments presented in Refs. 9 and 10 were per-
similar in the interior region of the dot where the electronic formed on self-assembled InAs quantum dots embedded into
density is concentrated, but it can be expected to substaGaAs. The diameter of the dots is estimated to be about 20
tially affect the electronic excitations. nm, and the height to be about 7 nm. As outlined above, we
We now turn to the components of,, that break the treat the quantum dots as two-dimensional systems. Within
circular symmetry. In Refs. 4 and 6 this is accomplished byour model, we also ignore the presence of the wetting layer.
including terms of square symmetry, i.e., proportional to  From their measurements, the authors of Refs. 9 and 10
x?y?. Similarly, one can add on terms proportionalfoor  deduced an effective mass* =0.08m, (where m, is the
y?, describing elliptic elongation of the dot along tk@ry  bare electronic mags Furthermore, we take the effective

IIl. RESULTS AND DISCUSSION

axis? In this manner, one arrives at charge a®* =e/ /e (e is the bare electronic chargaising
£=15.15 for the dielectric constant, i.e., the bulk value of

Vdot,iZ(r):arz InAs, and we employ an effectivgfactor g* = —0.44. For
Vior=a(l) = bré, (28 the curvature of the bare confining potential of the dot close

to its center, we take a value 8 =45 meV, which leads to
which introduces two more adjustable paramegeasdb, in ~ n, =0.7x10'® cm 2 via relation(27) (for R=100 A).
addition towg and w1 . The specific form of the bare confining potential of the
Again, an alternative approach to the construction ofdot can now be constructed using one of the two approaches
Vaol I, @) is to start out with a flat jellium disk of uniform discussed in Sec. IIC. In the following, our choice is to
positive chargen, , but this time with a noncircular shape constructvy.(r,¢) as the electrostatic potential associated
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2 04l FIG. 2. Calculated peak positions of the photoabsorption spec-
S o2t trum for a noncircular, nonparabolic quantum dot wWitk-2 elec-
0 . - trons. The full lines show the results one would obtain for a circular
0 50 100 150 200

parabolic dot; see Ed1).

r (A)

FIG. 1. Angular componentg, (r) of the bare confining po- wy=46.8 meV. We see that.for higher magnetic fields, the
tential of a quantum disk parametrized by E3@). The shape of the ~ calculated peaks follow the simple law of Ed). For small
disk is shown in the inset, together with a circle of radieg B, however, some deviations occur, and a splitting of about 2
=100 A. Top:1=0 component(ull line). For comparison, the meV remains even forB=0T, in accordance with
dashed line shows a parabolic potential with the same curvature inbservatior?:°

the interior region. Bottomt=2 (full line) andl=4 (dashed ling For N=2, the quantum dot contains a fdlshell}” and
components. the behavior is very similar to a parabolic dot. As soon as the
p shell is occupied, however, deviations from the parabolic
with a disk whose radius is parametrized as case become much more pronounced. In Fig. 3 we plot the
R(¢)=Ry+R, sirfe+R, sirfe cog . (32) ——————
70 . 49+
For Ry, we take the estimated radius of the dots, iR, _ L @
=100 A. The parameteR, indicates an elliptic elongation > 60 “ e —“J(+1)
of the quantum dot along thg axis. We adopt a value of E .38 cee o |wr
R,=5 A, as estimated in Ref. 9. For the paramd®grthat 8 Nres : i : |
causes an anisotropy of square symmetry, no direct experi- L;é st frteea, ],
mental numbers are available. In the following we choose Ttre L
R,=83 A, so that the value oR,sir*¢cose is at most T
20% of Ry. The resulting shape of the dot, a rectangle with ol — 1w
rounded-off corners, is shown as inset in Fig. 1. For com- R @
parison, a circle with radiuR, is also indicated. > 60 et e —“(+1)
In Fig. 1 we plot the angular componentgy,(r) of the G o2l H : PR
bare confining potential of the quantum disk parametrized by % 50 3 ! ' * : ° i
Eqg. (32). The top part shows the circularly symmetric part L%) sk’ - *tee,,, ol
Vaord '), together with a parabolic potential that would cor- e n ..
respond to the casey(r)=m*wir?2. The bottom part o T e
shows thd =2 and 4 components. Note that if the elongation 70 L L
of the dot is along the axis[replaceR, sirfe by R, coSe in _ ©
Eq. (32)], thenvy, Ar) changes sign. From Fig. 1 it is evi- > 60 ceo® —“J+1)
dent that the deviation from circular symmetry affects the E cee®®t e wf!
confining potential mainly in the region around the edge of % 0re§ L : * ’
the dot, whereas the inner region of the dot sees a nearly P trea,, dwl
parabolic potential. - et e
Let us now discuss our main numerical results. Figure 2 o T 1
shows the calculated peak positions of the photoabsorption (') 2 "‘ é é 1'0 1'2
cross sectiowr(w) versus applied magnetic field, for a quan- B (T)
tum dot withN=2 electrons. Here and in the following, we
assume the quantum dots to be elongated along tives. FIG. 3. Calculated peak positions of the photoabsorption spec-

We then calculate the photoabsorption spectra for two differtrum for a quantum dot witiN=3 electrons. Bottom: nonparabolic
ent polarizations of the FIR radiation, inandy directions,  but circular dot. Top and middle: nonparabolic, noncircular dot,
respectively. The symbols in Fig. 2 denote the average of th@ith polarization of the FIR radiation paralléX) and perpendicular
two spectra. For comparison, the full lines show the expectedy) to the direction of elongation. The_ mode splits up into three
behavior ofw. according to Eq(1), with a fitted value of subpeaks»'?, @, andw®, as indicated.
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FIG. 4. Energy levels of a single electron in the bare potential of
the quantum dot from Fig. 1 &=12T. The levels are drawn vs 9 60 o °© © o |
their angular momentum quantum numieand dashed lines con- g . : : : R
nect levels with the same principal quantum nummefrhe arrows = 50k i
indicate the single-particle transitions that constitute the threefold Q
agge =
splitting of w . > a0 o ° o . i
43 ® ®
FIR peak positions for ahl=3 quantum dot versuB. The 30 i
intensities of the absorption peaks are approximately indi- L L L L L 1
cated by the size of the symbols. The two top figures show 1 2 3 4 5 6
results for the noncircular dot, for two different polarizations N

of the FIR radiation: parallel to the direction of elongation of

the dot(the x axis) and perpendicular to it. In both cases we FIG. 5. Comparison between the calculated and experimental

find very rich spectra. For small magnetic fields, there arepeak positions in the photoabsorption spectra for quantum dots with

substantial differences between the two polarizations, fol<N=<6 electrons aB=12T. The open circles indicate those sig-

B>6T these differences disappear. nals that we find to be related to a broken circular symmetry of the
The bottom part of Fig. 3 shows the spectra for a circulaidots-

(but still nonparabolicdot. These results have been obtained

by settingv o, (r) =0 for | = =2 and+4, but using the same (see the discussion in the review article by Ashborin

Vaordr) as in the two figures above. By comparison betweertontrast with the strictly parabolic case, the vertical distances

the lower and the two upper parts of Fig. 3, we can nowbetween the levels in Fig. 4 are not constant.

clearly distinguish between those effects related to breaking In this simple picturgwhich remains qualitatively valid

the circular symmetry and those caused by nonparabolicitfor N>1 even if the electron-electron interaction is in-

The latter leads to a splitting of the, mode into two almost  cluded, the subpeaks ok, can be identified with single-

equally strong subpeaks" andw'?, separated by about 5 particle transitions. For circular symmetry, these are gov-

meV, plus the appearance of a weaker signal connected witfned by the selection rule for dipole transitiod$=*1. In

the @ mode and approximately 10 meV below it. We men-this simplified scenariow(™ and »?) arise from 5—1p_

tion that similar results have been previously obtained byand 1p, —2s transitions, as indicated in Fig. 4. Breaking the

Hawrylak and co-worker§® circular symmetry means that the selection rule can be vio-
By introducing a noncircular anisotropy, the, mode lated: we find that theo(f) mode originates from the transi-
acquires ahird subpeako® , in agreement with the experi- tion 1p,—1d_, i.e., Al=—3. The oscillator strength of

mentally observed behavigsee Fig. 3 of Ref. 10 We find  this mode is of course directly related to the degree of an-
that the evolution of this signal with magnetic field is differ- isotropy, which in our case is only small.

ent from that of the two other subpeaks ®@f : it becomes We have found that the position af(® with respect to

weaker with increasin@, and its separation from') and  »» andw'? is insensitive to small variations in the choice

w'? is growing. of the parameter®, andR, in Eq. (32). A weak signal at
To understand the origin of the threefold splittingf , ' will be present even if only one of the two is nonzero.

it is helpful to resort to a simple single-particle picture. Fig- However, the value oR,=5 A is more or less dictated by
ure 4 shows the energy levels of a single electron confined ithe experimentally observed splitting between and w _

the bare potential of our quantum dot B&=12T, versus for N=2 at zero magnetic field, see above. One then ob-
angular momentum quantum numbefsee Ref. 1Y The serves that choosing a finite value fy increases the inten-
dashed lines connect energy levels to which one can assigity of the third subpeak.

the same principal quantum number The distribution of The central result of this work is presented in Fig. 5. It
energy levels shown in Fig. 4 is very similar to that for a shows a comparison between the calculated and medsured
parabolic dot, which is governed by the formula peak positions in the photoabsorption spectra for quantum

dots with 1I=N<6 electron&’ at B=12T. We find that the
5 | main experimental features are reproduced by the calcula-
We @ ion. = d 2, the system behaves very similarly to a
_ T 2, o O t|pn ForN 1an , Yy very y
En=(2n+[l[+1) \ w5 4 2 (33 circular parabolic dot, as noted before, i.e., there are only



PRB 61 COLLECTIVE CHARGE-DENSITY EXCITATIONS & . .. 2735

two signals atw, andw_ . As soon as th@ shell becomes IV. CONCLUSION

occupied, i.e., forN=3, the w, mode splits up. AS ex- | this work, we developed a theoretical description of
plained above, the)®) signal (indicated here by the open ¢ojlective charge-density excitations of noncircular quantum
circles is related to a breaking of the circular symmetry.  gots in a magnetic field. The computational scheme pre-
We note that the calculation yields a splitting between thesented here allows one to obtain information on the geometry
three subpeaks @i, thatis greater than the one found in the o ;antum dots from their electronic response properties.
experiment. Also, forN=6 the experiment yields only a 5, specific aim was to reproduce and explain recent ex-
single signal aw.. . These differences between theory ar‘dt)erimental results, obtained for self-assembled InAs quan-

experiment are to be attributed to the simplified nature of ou m dots. In these FIR photoabsorotion measurements. one
model that treats the self-assembled dots as two—dimensionéi ! b P '

disks. In particular, the observed differencesNat 6 are etects a threefold splitting of the upper braneh of the

most likely due to our neglecting the presence of the wettin ollective charge-density mode in a magnetlc field, depend-
layer. ng on the number of electrons present in the dot. Our study

e main efet of the vting layer s o nfodce %5 ST 1t e S0ent e me S
continuum of states above a certain energy threshiiut- (due to the finitz dot radiy it. is essential to acgount for g
ing the number of bound states localized in the self- s

assembled dot. As the number of electrons grows, the energ%pisotropy effects, leading to a noncircular confining_ poten-
levels are shifted toward higher energies due to the increa tal. To our knowledge, here we have presented the first fully

ing interaction energy, and more and more states are pushgﬁlf-consist_ent spin-density-functional calculations of ground
into the continuum, up to a point where no additional eclecState plus linear response for anisotropic quantum dots with

tron can be bound. From the absenceudf’ and o for up\}\(l)itil)é)ﬁleg;gﬂgtions we were able to reproduce and ex-
N=6 observed in the experiment, we infer that the relevan P

. . . . blain the main features of the FIR spectroscopy measure-
states involved in the transitions ¢2and id_) would in . ments conducted in Refs. 9 and 10. However, the agreement

:_eallty falllénlto the W(ittlr;%hla_yert cont:Eut:'m and th;;);rgnsr was not fully quantitative. This may be attributed to the sim-
lons would lose most ot heir strength. However, licity of our model, which treats self-assembled, lens-

these states must still be located in the discrete part of th haped (with a possible elliptic or pyramidal distortion

energy spectrum, since the associated transitions are pres%ﬂfantum dots sitting on a wetting layer as two-dimensional

in the experiment. ; ;
. . . quantum disks. It may safely be expected that this model
This effect was accounted for in Ref. 18 by using a trun-eads to much better guantitative results for quantum-dot de-

Cat?d pasis of olnly few_ bound states in the numerical qiago\'/ices that are produced by mesa-etching techniques, also
nalization, and it was indeed found that =6 there is | J\0 as vertical quantum dot&

only a single peak ab'!). However, the calculations in Ref.
18 assumed circular symmetry and produced at most a two-
fold splitting of w, for N=3,4, and 5, in contrast with ex-
periment. We therefore conclude that, in spite of the devia-
tions from experiment mentioned above, our calculations This work was supported by Research Board Grant RB
clearly establish that the presenceddf) for N=3,4, and 5 96-071 from the University of Missouri and by NSF Grant
is due to a breaking of circular symmetry of the quantumNo. DMR-9706788. We thank Axel Lorke for stimulating
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