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Collective charge-density excitations of noncircular quantum dots in a magnetic field

C. A. Ullrich and G. Vignale
Department of Physics, University of Missouri, Columbia, Missouri 65211

~Received 13 July 1999!

Recent photoabsorption measurements have revealed a rich fine structure in the collective charge-density
excitation spectrum of few-electron quantum dots in the presence of magnetic fields. We have performed
systematic computational studies of the far-infrared density response of quantum dots, using time-dependent
density-functional theory in the linear regime and treating the dots as two-dimensional disks. It turns out that
the main characteristics observed in the experiment can be understood in terms of the electronic shell structure
of the quantum dots. However, additional features arise if a breaking of the circular symmetry of the dots is
allowed, leading to an improved description of the experimental results.
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I. INTRODUCTION

The electronic structure and dynamics of quantum d
have been a subject of intense study in recent time.1,2 Fre-
quently one makes the simplifying assumption that the e
trons in quantum dots form a two-dimensional system c
fined by a parabolic potential of circular symmetry. T
electronic ground state can then be found either through
agonalization schemes or by using mean-field approac
such as Hartree theory or density-functional theory. T
former treatment is computationally much more demandi
and has so far only been used to describe few-electron
tems, whereas the latter approach has been applied to
tron numbers of order 100. In either case, however, one fi
that the main features observed in the experiment~such as
effects related to the electronic shell structure! are well re-
produced.

The model of a parabolic circular quantum dot is
course an idealization. It was already recognized in the e
1990s that explaining certain experimental features requ
including some deviation from parabolicity of the confinin
potential. A first study of this kind was performed by Broid
et al.,3 who considered the ground state and far-infra
~FIR! response of up to 30 electrons confined in a circu
quantum disk of radius 100 nm. Their approach, as well a
similar one by Gudmundsson and Gerhards,4 was based on a
Hartree plus random-phase-approximation description of
electrons. Both studies showed that a correction to the c
fining potential toward the edge of the dot that makes
steeper than the parabolic potential leads to a blueshift of
collective dipole modes that increases with the numberN of
electrons in the dot. In addition, it was found in Ref. 4 th
one has to include a deviation from circular symmetry
order to explain the anticrossing behavior in the FIR spe
observed in the experiments by Demelet al.5 These findings
were supported by an exact diagonalization study of qu
tum dot helium by Pfannkuche and Gerhards,6 and further
elaborated by Ye and Zaremba7 using a hydrodynamic ap
proach. We finally mention a very recent study by Hiro
and Wingreen8 that used spin-density-functional theory
describe the electronic shell structure and calculate add
energies in elliptic dots.

The present work was motivated by a recent series
PRB 610163-1829/2000/61~4!/2729~8!/$15.00
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experiments on self-assembled InAs quantum dots p
formed by Kotthaus and co-workers in Munich.9–11 The ex-
periments use a combination ofin situ capacitance spectros
copy and FIR absorption spectroscopy to probe the gro
state and collective charge-density excitations as a func
of the electron number per dot, 1<N<6. For N51 and 2
one finds the well-known two-mode spectrum described
the simple formula

v65Av0
21

vc
2

4
6

vc

2
, ~1!

where v0 is the characteristic frequency associated with
parabolic confinement potential, andvc5eB/m* c is the cy-
clotron frequency for particles of chargee and massm* in a
magnetic fieldB. However, forN.2 the authors of Refs. 9
and 10 detected a much richer FIR spectrum: thev1 mode is
observed to split up intothreesubpeaks~see Fig. 3 of Ref.
9!.

The authors argued within a simple picture of nonint
acting particles that the observed splitting of thev1 mode is
caused by the nonparabolicity of the confining potential
the quantum dots. Since forN53,4, and 5 thep shell is only
partly filled, the system can perform transitions of thes
→p andp→d types, which have slightly different energie
in contrast with the strictly parabolic case. This simple e
planation, however, can only account for a twofold splitti
of the v1 mode. It is then further argued that the observ
third ~somewhat weaker! signal is caused by effects relate
to electron-electron interaction.

It is the purpose of the present paper to provide a theo
ical explanation of the threefold splitting of thev1 mode
observed in Ref. 9. Our approach is based on dens
functional theory for the ground state and linear respons
the presence of a magnetic field. It will turn out in the fo
lowing that including electron-electron interaction effec
alone is not sufficient. Instead, the presence of the third s
peak is explained by a combination of the nonparabolic
plus breaking of the circular symmetry of the confining p
tential.

The paper is organized as follows: in Sec. II, we sh
introduce our model for the quantum dots, a two-dimensio
disk, and we shall present the theoretical methods for
2729 ©2000 The American Physical Society
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2730 PRB 61C. A. ULLRICH AND G. VIGNALE
scribing the electronic ground state and dynamics. In S
III, we then discuss our numerical results, and Sec. IV gi
our conclusions.

II. FORMAL FRAMEWORK

A. Ground-state calculation

The electronic ground state of a system in the presenc
magnetic fields is described by current-density-functio
theory. The general formalism was developed by Vign
and Rasolt,12 and to date there exist several applications
quantum dots.13,14Here we want to generalize the formalism
which originally was developed for circular quantum dots,
describe noncircular systems.

In the following, we shall make our lives a little easie
especially in view of the linear response calculations later
and neglect the dependence of the exchange-correlation~xc!
energyExc on the current densityj ps . This dependence is
known to cause only a small effect in the electronic grou
state of quantum dots. The xc vector potential then drops
and the Kohn-Sham equation as derived in Ref. 12 beco

H 2
¹2

2m*
2

ie

2m* c
@Aext~r !•“1“•Aext~r !#1

e2Aext
2 ~r !

2m* c2

1vexts ~r !1vH~r !1vxcs ~r !J c j s~r !5e j sc j s~r !,

~2!

where as usualvexts andAext denote the external scalar an
vector potentials andvH(r ) andvxcs(r ) are the Hartree and
xc potentials. In the following, the basic assumption is t
the quantum dots can be treated as two-dimensional syst
We then use polar coordinates and write the external po
tial as a sum of the bare potential of the quantum dot plus
Zeeman term:

vexts ~r ,w!5vdot~r ,w!1
1

2
g* mBBs. ~3!

Here mB5e\/2m, s561, and the specific form o
vdot(r ,w) will be discussed in Sec. II C below. In turn, th
external vector potential is given by

Aext~r ,w!5
B

2
rêw , ~4!

corresponding to a uniform magnetic fieldB perpendicular to
the dot. Next we expand the Kohn-Sham orbitals in po
coordinates as

c j s~r !5(
l

f j l s~r !e2 i l w, ~5!

where thef j l s(r ) are real. The spin density is then given b
c.
s

of
l

e
o

n,

d
t,

es

t
s.

n-
e

r

ns~r !5ns~r ,w!

5(
j

f j suc j s~r !u2

5(
j l l 8

f j sf j l s~r !f j l 8s~r !ei ( l 2 l 8)w, ~6!

wheref j s denotes occupation numbers of the orbitals. In
following, all calculations will be performed at a small bu
finite temperature,T54.2 K, in order to avoid convergenc
problems at small magnetic fields. The occupation numb
are then given by the thermal distribution

f j s5
1

11expS e j s2m

kBT D , ~7!

and the chemical potentialm is fixed through the relation
( j s f j s5N. Next the confining potential of the dot is ex
panded as

vdot~r ,w!5(
l

vdot,l~r !e2 i l w. ~8!

Similar expansions are made for the Hartree and xc po
tials. For the dot potential, the angular components

vdot,l~r !5
1

2pE0

2p

dweil wvdot~r ,w! ~9!

in general have to be obtained through straightforward
merical integration, and similarly for the xc potential~for the
latter we use the local-density approximation in the para
etrization of Tanatar and Ceperley15!. For the Hartree poten
tial, one finds

vH,l~r !52pe* 2(
s

(
jnn8

n2n85 l

3E
0

`

r 8dr8f jns~r 8!f jn8s~r 8!I l~r ,r 8!, ~10!

wheree* is the effective electronic charge, and theI l(r ,r 8)
involve integrals over Bessel functions:

I l~r ,r 8!5E
0

`

dqJl~qr !Jl~qr8!. ~11!

I l(r ,r 8) can be expressed in terms of hypergeometric fu
tions that can be further reduced to complete elliptic integr
~see Ref. 3 for the casel 51). Inserting everything into the
Kohn-Sham equation, we finally obtain

H 2
1

2m*
S d2

dr2
1

1

r

d

dr
2

l 2

r 2D 2
elB

2m* c
1

e2B2r 2

8m* c2

1
1

2
g* mBBsJ f j l s~r !1(

k
@vdot,k~r !1vH,k~r !

1vxcs,k~r !#f j l 2ks~r !5e j sf j l s~r !. ~12!
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Equation~12! couples the angular components of the Koh
Sham orbitals~5!. In practice, we of course limit the expan
sions of the orbitals and potentials to a finite number
components,2L, . . . ,l , . . . ,L, whereL of the order 5 is
sufficient to give convergence for the cases under study.
lution of the Kohn-Sham equation~12! is then accomplished
by discretization on a logarithmic radial mesh withNgrid
;100 grid points.

B. Linear response

The FIR absorption spectra as measured in Refs. 9 an
are proportional to the photoabsorption cross section

s~v!5
4pv

c
Im a~v!, ~13!

where the dipole polarizability with respect to, say, thex
axis,

a~v!52
2e

E0
E d3rxn1~r ,v!, ~14!

is obtained from the linear density responsen1(r ,v) of the
quantum dots to an external field of the form

v1~r ,v!5
eE0x

2
, ~15!

whereE0 is the amplitude of the electric field strength.
order to calculaten1(r ,v)5(sn1s(r ,v), we have to solve
the linear spin-density response equation, which reads as
lows:

n1s~r ,v!5E d3r 8xs~r ,r 8,v!H v1s~r 8,v!

1(
t
E d3r 9S e* 2

ur 82r 9u
1 f xcs t ~r 8,r 9,v!D

3n1t~r 9,v!J , ~16!

i.e., we have to solve two coupled integral equations forn1↑
andn1↓ . The Kohn-Sham response function

xs~r ,r 8,v!5(
j ,k

`

~ f ks2 f j s!
cks* ~r !c j s~r !c j s* ~r 8!cks~r 8!

«ks2« j s1v1 ih
~17!

is diagonal in the spins. Let us now expand the density
sponse as

n1s~r ,v!5 (
n52N

N

n1ns~r ,v!einw, ~18!

where in practice of courseN<L. Inserting the form~5! of
the Kohn-Sham orbitals, the response function is set up
the following way:

xs~r ,r 8,v!5 (
l ,l 852N

N

x l l 8s~r ,r 8,v!eil we2 i l 8w8, ~19!
-

f

o-

10

ol-

-

in

where we define

x l l 8s~r ,r 8,v!5(
j ,k

`

~ f ks2 f j s!
F jkl~r !F jkl 8~r 8!

«ks2« j s1v1 ih
, ~20!

with

F jkL~r !5 (
l ,l 8

l 82 l 5L

f j l ~r !fkl8~r !. ~21!

For the xc kernel we use the adiabatic local-density appro
mation ~ALDA !

f xcs t ~r 8,r 9,v!5
d2exc

dnsdnt
U

n0(r8)

d~r 82r 9!

5d~r 82r 9! (
m852N

N

f xc,m8st~r 8!eim8w8,

~22!

whereexc is the xc energy density of the homogeneous tw
dimensional electron gas,15 and

f xc,m8st~r 8!5
1

2pE0

2p

dw8
d2exc

dnsdnt
U

n0(r8)

e2 im8w8. ~23!

In the ALDA, the xc kernel is frequency independent a
real ~for a recent discussion of alternative expressions
f xc , see Ref. 16!. The imaginary part of the Kohn-Sham
response function~17! thus has to be put in by hand. In th
following, we choose a value ofh50.1 meV, corresponding
to about 0.1–1% of the excitation energies under study.

Inserting everything into the response equation~16!, we
obtain

n1ls~r ,v!5E
0

`

dr8r 8 (
l 852N

N

x l l 8s~r ,r 8,v!v1l 8s~r 8,v!

14p2e* 2(
t
E

0

`

dr8r 8E
0

`

dr9r 9

3 (
l 852N

N

x l l 8s~r ,r 8,v!n1l 8t~r 9,v!I l 8~r 8,r 9!

12p(
t
E

0

`

dr8r 8 (
l 8,m52N

N

x l l 8s~r ,r 8,v!

3n1mt~r 8,v! f xc,(l 82m)st~r 8!. ~24!

Solving for the density responsen1(r ,v)5n1↑(r ,v)
1n1↓(r ,v) for a given value ofv thus requires inversion o
a complex matrix of dimension 2Ngrid(2N11)51400 ~for
N53 andNgrid5100), which poses no problem in practic

C. External potential

Let us now turn to the specific form of the bare confini
potential of the quantum dot,vdot(r ,w), used to construct the
electronic ground state in Sec. II A. First of all, we restr
ourselves to considering only potentials that have invers
symmetry. In other words, expansion~8! of vdot(r ,w) con-



of

n
e-
n

o
l

-
e

r
e
ic
ta

b
to

o

e

lcu-

,
-
e
ct

ion.

ly

s

the
rge
me
hat
n-
d

per-
into
t 20
we

thin
yer.

10

e

of

se

e
hes
to
ed

2732 PRB 61C. A. ULLRICH AND G. VIGNALE
tains only angular componentsvdot,l(r ) with evenl. We can
then replaceeil w in Eq. ~9! by cos(lw). Furthermore, to re-
duce the computational effort we shall restrict the valuesl
to l 50,62, and64.

We first consider the circularly symmetric part of the co
fining potential,vdot,0(r ). This component describes the d
gree of nonparabolicity of our quantum dot. Pfannkuche a
Gerhards6 assumed a form

vdot,0~r !5
m*

2
~v0

2r 21v1
2r 4!, ~25!

wherev1!v0 . A different approach was chosen by Broid
et al.3: they constructedvdot,0(r ) as the electrostatic potentia
associated with a two-dimensional jellium disk of radiusR
and uniform positive areal charge densityn1 . Their result
was

vdot,0~r !5v024e* 2n1RES r

RD , r ,R,

vdot,0~r !5v024e* 2n1r FES R

r D2S 12
R2

r 2 D KS R

r D G , r .R,

~26!

wherev052pe* 2n1R. HereK and E denote complete el
liptic integrals of the first and second kinds. It is easy to s
that Eq.~25! is the small-r expansion of Eq.~26!, identifying
the coefficients as

v0
25

pe* 2n1

m* R
,

~27!

v1
25

3pe* 2n1

16m* R3
.

The main difference between the two forms ofvdot,0(r ) is
that~25! grows asr 4 for larger, whereas~26! approaches the
constantv0 as 1/r . This difference is of less importance fo
the electronic ground state, since the two potentials are v
similar in the interior region of the dot where the electron
density is concentrated, but it can be expected to subs
tially affect the electronic excitations.

We now turn to the components ofvdot that break the
circular symmetry. In Refs. 4 and 6 this is accomplished
including terms of square symmetry, i.e., proportional
x2y2 . Similarly, one can add on terms proportional tox2 or
y2, describing elliptic elongation of the dot along thex or y
axis.8 In this manner, one arrives at

vdot,62~r !5ar2

~28!vdot,64~r !5br4,

which introduces two more adjustable parametersa andb, in
addition tov0 andv1 .

Again, an alternative approach to the construction
vdot(r ,w) is to start out with a flat jellium disk of uniform
positive chargen1 , but this time with a noncircular shap
-

d

e

ry

n-

y

f

parametrized asR(w). Once a particular form forR(w) has
been chosen, the associated electrostatic potential is ca
lated as

vdot~r ,w!5 ṽ02e* 2n1E
0

2p

dw8E
0

R(w8)

3
r 8dr8

Ar 21r 8222rr 8 cos~w2w8!
, ~29!

where now

ṽ05e* 2n1E
0

2p

dw8R~w8!. ~30!

The r 8 integral in Eq.~29! can be performed analytically
and the remaining integration overw8 has to be done numeri
cally for generalR(w8). If R(w8)5const, one recovers th
previous result@Eqs.~26!#. The next step is then to constru
the angular componentsvdot,l(r ) using Eq.~9!, which in gen-
eral requires a second straightforward numerical integrat

The large-r behavior of the dot potential~29! is found to
be

vdot~r→`,w!5 ṽ02
e* 2n1

2r E
0

2p

dw8R~w8!2, ~31!

independent ofw. This means that for large distances on
the l 50 component ofvdot(r ,w) survives~approaching the
constantṽ0), and the higher-l components go to zero. This i
again in contrast with the form~28! for the noncircular com-
ponents of the dot potential, which~unphysically! keep in-
creasing with distance. As noted before in the case of
circular dot, this difference is not expected to have a la
impact on the electronic ground state, but it may beco
important for higher excitations. We therefore conclude t
in general it is preferable to work with dot potentials co
structed according to Eq.~29!, thus avoiding effects cause
by an unphysical behavior in the large-r region.

III. RESULTS AND DISCUSSION

The experiments presented in Refs. 9 and 10 were
formed on self-assembled InAs quantum dots embedded
GaAs. The diameter of the dots is estimated to be abou
nm, and the height to be about 7 nm. As outlined above,
treat the quantum dots as two-dimensional systems. Wi
our model, we also ignore the presence of the wetting la

From their measurements, the authors of Refs. 9 and
deduced an effective massm* 50.08me ~where me is the
bare electronic mass!. Furthermore, we take the effectiv
charge ase* 5e/A« (e is the bare electronic charge!, using
«515.15 for the dielectric constant, i.e., the bulk value
InAs, and we employ an effectiveg-factor g* 520.44. For
the curvature of the bare confining potential of the dot clo
to its center, we take a value ofv0545 meV, which leads to
n150.731015 cm22 via relation~27! ~for R5100 Å).

The specific form of the bare confining potential of th
dot can now be constructed using one of the two approac
discussed in Sec. II C. In the following, our choice is
constructvdot(r ,w) as the electrostatic potential associat
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with a disk whose radius is parametrized as

R~w!5R01R2 sin2w1R4 sin2w cos2w. ~32!

For R0, we take the estimated radius of the dots, i.e.,R0
5100 Å. The parameterR2 indicates an elliptic elongation
of the quantum dot along they axis. We adopt a value o
R255 Å, as estimated in Ref. 9. For the parameterR4 that
causes an anisotropy of square symmetry, no direct exp
mental numbers are available. In the following we choo
R4583 Å, so that the value ofR4 sin2w cos2w is at most
20% of R0 . The resulting shape of the dot, a rectangle w
rounded-off corners, is shown as inset in Fig. 1. For co
parison, a circle with radiusR0 is also indicated.

In Fig. 1 we plot the angular componentsvdot,l(r ) of the
bare confining potential of the quantum disk parametrized
Eq. ~32!. The top part shows the circularly symmetric pa
vdot,0(r ), together with a parabolic potential that would co
respond to the casevdot(r )5m* v0

2r 2/2. The bottom part
shows thel 52 and 4 components. Note that if the elongati
of the dot is along thex axis@replaceR2 sin2w by R2 cos2w in
Eq. ~32!#, thenvdot,2(r ) changes sign. From Fig. 1 it is ev
dent that the deviation from circular symmetry affects t
confining potential mainly in the region around the edge
the dot, whereas the inner region of the dot sees a ne
parabolic potential.

Let us now discuss our main numerical results. Figur
shows the calculated peak positions of the photoabsorp
cross sections(v) versus applied magnetic field, for a qua
tum dot withN52 electrons. Here and in the following, w
assume the quantum dots to be elongated along thex axis.
We then calculate the photoabsorption spectra for two dif
ent polarizations of the FIR radiation, inx andy directions,
respectively. The symbols in Fig. 2 denote the average of
two spectra. For comparison, the full lines show the expec
behavior ofv6 according to Eq.~1!, with a fitted value of

FIG. 1. Angular componentsvdot,l(r ) of the bare confining po-
tential of a quantum disk parametrized by Eq.~32!. The shape of the
disk is shown in the inset, together with a circle of radiusR0

5100 Å. Top: l 50 component~full line!. For comparison, the
dashed line shows a parabolic potential with the same curvatu
the interior region. Bottom:l 52 ~full line! and l 54 ~dashed line!
components.
ri-
e

-

y
t

f
rly

2
n

r-

e
d

v0546.8 meV. We see that for higher magnetic fields, t
calculated peaks follow the simple law of Eq.~1!. For small
B, however, some deviations occur, and a splitting of abou
meV remains even forB50T, in accordance with
observation.9,10

For N52, the quantum dot contains a fulls shell,17 and
the behavior is very similar to a parabolic dot. As soon as
p shell is occupied, however, deviations from the parabo
case become much more pronounced. In Fig. 3 we plot

in

FIG. 2. Calculated peak positions of the photoabsorption sp
trum for a noncircular, nonparabolic quantum dot withN52 elec-
trons. The full lines show the results one would obtain for a circu
parabolic dot; see Eq.~1!.

FIG. 3. Calculated peak positions of the photoabsorption sp
trum for a quantum dot withN53 electrons. Bottom: nonparaboli
but circular dot. Top and middle: nonparabolic, noncircular d
with polarization of the FIR radiation parallel~X! and perpendicular
~Y! to the direction of elongation. Thev1 mode splits up into three
subpeaksv1

(1) , v1
(2) , andv1

(3) , as indicated.
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2734 PRB 61C. A. ULLRICH AND G. VIGNALE
FIR peak positions for anN53 quantum dot versusB. The
intensities of the absorption peaks are approximately in
cated by the size of the symbols. The two top figures sh
results for the noncircular dot, for two different polarizatio
of the FIR radiation: parallel to the direction of elongation
the dot~the x axis! and perpendicular to it. In both cases w
find very rich spectra. For small magnetic fields, there
substantial differences between the two polarizations,
B.6T these differences disappear.

The bottom part of Fig. 3 shows the spectra for a circu
~but still nonparabolic! dot. These results have been obtain
by settingvdot,l(r )50 for l 562 and64, but using the same
vdot,0(r ) as in the two figures above. By comparison betwe
the lower and the two upper parts of Fig. 3, we can n
clearly distinguish between those effects related to break
the circular symmetry and those caused by nonparabolic
The latter leads to a splitting of thev1 mode into two almost
equally strong subpeaks,v1

(1) andv1
(2) , separated by about

meV, plus the appearance of a weaker signal connected
thev2 mode and approximately 10 meV below it. We me
tion that similar results have been previously obtained
Hawrylak and co-workers.2,18

By introducing a noncircular anisotropy, thev1 mode
acquires athird subpeakv1

(3) , in agreement with the experi
mentally observed behavior~see Fig. 3 of Ref. 10!. We find
that the evolution of this signal with magnetic field is diffe
ent from that of the two other subpeaks ofv1 : it becomes
weaker with increasingB, and its separation fromv1

(1) and
v1

(2) is growing.
To understand the origin of the threefold splitting ofv1 ,

it is helpful to resort to a simple single-particle picture. Fi
ure 4 shows the energy levels of a single electron confine
the bare potential of our quantum dot atB512T, versus
angular momentum quantum numberl ~see Ref. 17!. The
dashed lines connect energy levels to which one can as
the same principal quantum numbern. The distribution of
energy levels shown in Fig. 4 is very similar to that for
parabolic dot, which is governed by the formula

Enl5~2n1u l u11!Av0
21

vc
2

4
2

vcl

2
~33!

FIG. 4. Energy levels of a single electron in the bare potentia
the quantum dot from Fig. 1 atB512T. The levels are drawn vs
their angular momentum quantum numberl, and dashed lines con
nect levels with the same principal quantum numbern. The arrows
indicate the single-particle transitions that constitute the three
splitting of v1 .
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~see the discussion in the review article by Ashoori1!. In
contrast with the strictly parabolic case, the vertical distan
between the levels in Fig. 4 are not constant.

In this simple picture~which remains qualitatively valid
for N.1 even if the electron-electron interaction is i
cluded!, the subpeaks ofv1 can be identified with single-
particle transitions. For circular symmetry, these are g
erned by the selection rule for dipole transitions,D l 561. In
this simplified scenario,v1

(1) andv1
(2) arise from 1s→1p2

and 1p1→2s transitions, as indicated in Fig. 4. Breaking th
circular symmetry means that the selection rule can be
lated: we find that thev1

(3) mode originates from the trans
tion 1p1→1d2 , i.e., D l 523. The oscillator strength o
this mode is of course directly related to the degree of
isotropy, which in our case is only small.

We have found that the position ofv1
(3) with respect to

v1
(1) andv1

(2) is insensitive to small variations in the choic
of the parametersR2 and R4 in Eq. ~32!. A weak signal at
v1

(3) will be present even if only one of the two is nonzer
However, the value ofR255 Å is more or less dictated by
the experimentally observed splitting betweenv1 and v2

for N52 at zero magnetic field, see above. One then
serves that choosing a finite value forR4 increases the inten
sity of the third subpeak.

The central result of this work is presented in Fig. 5.
shows a comparison between the calculated and measu9

peak positions in the photoabsorption spectra for quan
dots with 1<N<6 electrons19 at B512T. We find that the
main experimental features are reproduced by the calc
tion. ForN51 and 2, the system behaves very similarly to
circular parabolic dot, as noted before, i.e., there are o

f

ld

FIG. 5. Comparison between the calculated and experime
peak positions in the photoabsorption spectra for quantum dots
1<N<6 electrons atB512T. The open circles indicate those sig
nals that we find to be related to a broken circular symmetry of
dots.



n

th
e

nd
ou
ion

in

a

lf
er
ea
sh
c

an

si-

th
es

n
g

f.
tw
-
ia
n

m

of
um
re-

etry
s.
ex-
an-
one

nd-
udy

re-
ity

r
n-
lly
nd
ith

ex-
ure-

ent
m-
s-

nal
del
de-
also

RB
nt
g

PRB 61 2735COLLECTIVE CHARGE-DENSITY EXCITATIONS OF . . .
two signals atv1 andv2 . As soon as thep shell becomes
occupied, i.e., forN>3, the v1 mode splits up. As ex-
plained above, thev1

(3) signal ~indicated here by the ope
circles! is related to a breaking of the circular symmetry.

We note that the calculation yields a splitting between
three subpeaks ofv1 that is greater than the one found in th
experiment. Also, forN56 the experiment yields only a
single signal atv1 . These differences between theory a
experiment are to be attributed to the simplified nature of
model that treats the self-assembled dots as two-dimens
disks. In particular, the observed differences atN56 are
most likely due to our neglecting the presence of the wett
layer.

The main effect of the wetting layer is to introduce
continuum of states above a certain energy threshold,2 limit-
ing the number of bound states localized in the se
assembled dot. As the number of electrons grows, the en
levels are shifted toward higher energies due to the incr
ing interaction energy, and more and more states are pu
into the continuum, up to a point where no additional ele
tron can be bound. From the absence ofv1

(2) and v1
(3) for

N56 observed in the experiment, we infer that the relev
states involved in the transitions (2s and 1d2) would in
reality fall into the wetting layer continuum and the tran
tions would lose most of their strength. However, forN,6
these states must still be located in the discrete part of
energy spectrum, since the associated transitions are pr
in the experiment.

This effect was accounted for in Ref. 18 by using a tru
cated basis of only few bound states in the numerical dia
nalization, and it was indeed found that forN56 there is
only a single peak atv1

(1) . However, the calculations in Re
18 assumed circular symmetry and produced at most a
fold splitting of v1 for N53,4, and 5, in contrast with ex
periment. We therefore conclude that, in spite of the dev
tions from experiment mentioned above, our calculatio
clearly establish that the presence ofv1

(3) for N53,4, and 5
is due to a breaking of circular symmetry of the quantu
dots.
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IV. CONCLUSION

In this work, we developed a theoretical description
collective charge-density excitations of noncircular quant
dots in a magnetic field. The computational scheme p
sented here allows one to obtain information on the geom
of quantum dots from their electronic response propertie

Our specific aim was to reproduce and explain recent
perimental results, obtained for self-assembled InAs qu
tum dots. In these FIR photoabsorption measurements,
detects a threefold splitting of the upper branchv1 of the
collective charge-density mode in a magnetic field, depe
ing on the number of electrons present in the dot. Our st
has shown that these experimental features are closely
lated to the shape of the dots: in addition to nonparabolic
~due to the finite dot radius!, it is essential to account fo
anisotropy effects, leading to a noncircular confining pote
tial. To our knowledge, here we have presented the first fu
self-consistent spin-density-functional calculations of grou
state plus linear response for anisotropic quantum dots w
up to six electrons.

With our calculations we were able to reproduce and
plain the main features of the FIR spectroscopy meas
ments conducted in Refs. 9 and 10. However, the agreem
was not fully quantitative. This may be attributed to the si
plicity of our model, which treats self-assembled, len
shaped~with a possible elliptic or pyramidal distortion!
quantum dots sitting on a wetting layer as two-dimensio
quantum disks. It may safely be expected that this mo
leads to much better quantitative results for quantum-dot
vices that are produced by mesa-etching techniques,
known as vertical quantum dots.20
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