257 research outputs found
Quantum-path analysis and phase matching of high-order harmonic generation and high-order frequency mixing processes in strong laser fields
We study phase-matching conditions for high-order harmonic generation as well as high-order sum- and difference-frequency mixing processes in strong laser fields, using a graphical approach described in Balcou et al (1997 Phys. Rev. A 55 3204-10). This method is based on the analysis of the different quantum paths that contribute, with different phase properties, to the single-atom response. We propose a simple numerical method to disentangle the quantum paths contributing to the generation process. We present graphical maps of the phase matching around the laser focus, which allow one to predict the geometries that optimize the conversion efficiency of the process considered. The method is applied to the study of sum- and difference-frequency mixing processes. The qualitative predictions of the graphical phase-matching approach are confirmed by numerical propagation calculations
Strongly enhanced orbital moments and anisotropies of adatoms on the Ag(001) surface
We present ob initio calculations for orbital moments and anisotropy energies of 3d and 5d adatoms on the Ag(001) surface, based on density functional theory, including Brooks' orbital polarization (OP) term, and applying a fully relativistic Korringa-Kohn-Rostoker-Green's function method. In general, we find unusually large orbital moments and anisotropy energies, e.g., in the 3d series. 2.57 mu (B) and +74 meV for Co, and, in the 5d series, 1.78 mu (B) and +42 meV for Os. These magnetic properties are determined mainly by the OP and even exist without spin-orbit coupling
Разработка информационных систем управления рисками для предметных областей
This paper is about specifics of developing risk management information system in construction company and advertising business
Magnetic properties of Quantum Corrals from first principles calculations
We present calculations for electronic and magnetic properties of surface
states confined by a circular quantum corral built of magnetic adatoms (Fe) on
a Cu(111) surface. We show the oscillations of charge and magnetization
densities within the corral and the possibility of the appearance of
spin--polarized states. In order to classify the peaks in the calculated
density of states with orbital quantum numbers we analyzed the problem in terms
of a simple quantum mechanical circular well model. This model is also used to
estimate the behaviour of the magnetization and energy with respect to the
radius of the circular corral. The calculations are performed fully
relativistically using the embedding technique within the
Korringa-Kohn-Rostoker method.Comment: 14 pages, 9 figures, submitted to J. Phys. Cond. Matt. special issue
on 'Theory and Simulation of Nanostructures
Adiabatic and Non-Adiabatic Contributions to the Free Energy from the Electron-Phonon Interaction for Na, K, Al, and Pb
We calculate the adiabatic contributions to the free energy due to the
electron--phonon interaction at intermediate temperatures, for the elemental metals Na, K, Al, and Pb. Using our
previously published results for the nonadiabatic contributions we show that
the adiabatic contribution, which is proportional to at low
temperatures and goes as at high temperatures, dominates the
nonadiabatic contribution for temperatures above a cross--over temperature,
, which is between 0.5 and 0.8 , where is the melting
temperature of the metal. The nonadiabatic contribution falls as for
temperatures roughly above the average phonon frequency.Comment: Updated versio
Coulomb parameters and photoemission for the molecular metal TTF-TCNQ
We employ density-functional theory to calculate realistic parameters for an
extended Hubbard model of the molecular metal TTF-TCNQ. Considering both intra-
and intermolecular screening in the crystal, we find significant longer-range
Coulomb interactions along the molecular stacks, as well as inter-stack
coupling. We show that the long-range Coulomb term of the extended Hubbard
model leads to a broadening of the spectral density, likely resolving the
problems with the interpretation of photoemission experiments using a simple
Hubbard model only.Comment: 4 pages, 2 figure
Introduction to half-metallic Heusler alloys: Electronic Structure and Magnetic Properties
Intermetallic Heusler alloys are amongst the most attractive half-metallic
systems due to the high Curie temperatures and the structural similarity to the
binary semiconductors. In this review we present an overview of the basic
electronic and magnetic properties of both Heusler families: the so-called
half-Heusler alloys like NiMnSb and the the full-Heusler alloys like
CoMnGe. \textit{Ab-initio} results suggest that both the electronic and
magnetic properties in these compounds are intrinsically related to the
appearance of the minority-spin gap. The total spin magnetic moment
scales linearly with the number of the valence electrons , such that
for the full-Heusler and for the half-Heusler alloys,
thus opening the way to engineer new half-metallic alloys with the desired
magnetic properties.Comment: 28 pages, submitted for a special issue of 'Journal of Physics D:
Applied Physics' on Heusler alloy
- …