232 research outputs found

    The study of expanded tri-lobed flap in a rabbit model: possible flap model in ear reconstruction?

    Get PDF
    BACKGROUND: Local flaps are widely used in reconstructive surgery. Tri-lobed skin flap is a relatively new flap and there has been no experimental model of this flap. This flap can be used for repair of full thickness defects in the face, ears and alar region. Based on the size of ears in a rabbit, we designed a model of ear reconstruction using expanded tri-lobed flap. Local flaps are more advantageous in that they provide excellent color and texture matching up with those of the face, adequately restore ear contour, place scars in a favorable location and ideally accomplish these goals in a single stage with minimal donor site morbidity. METHODS: Eight adult New Zealand rabbits were divided into two groups. 50 ml round tissue expander were implanted to four rabbits. After completion of the expansion, a superiorly based tri-lobed flap was elevated and a new ear was created from the superior dorsal skin of each rabbit. Scintigraphy with Technetium-99m pertecnetate was performed to evaluate flap viability. RESULTS: Subtotal flap necrosis was seen in all animals in non-expanded group. New ear in dimensions of the original ear was created in expanded group without complication. Perfusion and viability of the flaps were proved by Technetium-99m pertecnetate scintigraphy. CONCLUSION: According to our knowledge this study is the first to demonstrate animal model in tri-lobed flap. Also, our technique is the first application of the trilobed flap to the possible ear reconstruction. We speculated that this flap may be used mastoid based without hair, in human. Also, tri-lobed flap may be an alternative in reconstruction of cylindrical organs such as penis or finger

    Multibudded tubules formed by COPII on artificial liposomes

    Get PDF
    COPII-coated vesicles form at the endoplasmic reticulum for cargo transport to the Golgi apparatus. We used in vitro reconstitution to examine the roles of the COPII scaffold in remodeling the shape of a lipid bilayer. Giant Unilamellar Vesicles were examined using fast confocal fluorescence and cryo-electron microscopy in order to avoid separation steps and minimize mechanical manipulation. COPII showed a preference for high curvature structures, but also sufficient flexibility for binding to low curvatures. The COPII proteins induced beads-on-a-string-like constricted tubules, similar to those previously observed in cells. We speculate about a mechanical pathway for vesicle fission from these multibudded COPII-coated tubules, considering the possibility that withdrawal of the Sar1 amphipathic helix upon GTP hydrolysis leads to lipid bilayer destabilization resulting in fission

    Anatomy of Heinrich Layer 1 and its role in the last deglaciation

    Get PDF
    X-ray fluorescence (XRF) core scanning and X-ray computed tomography data were measured every 1 mm to study the structure of Heinrich Event 1 during the last deglaciation at International Ocean Discovery Program Site U1308. Heinrich Layer 1 comprises two distinct layers of ice-rafted detritus (IRD), which are rich in detrital carbonate (DC) and poor in foraminifera. Each DC layer consists of poorly sorted, coarse-grained clasts of IRD embedded in a dense, fine-grained matrix of glacial rock flour that is partially cemented. The radiocarbon ages of foraminifera at the base of the two layers indicate a difference of 1400 14^{14}C years, suggesting that they are two distinct events, but the calendar ages depend upon assumptions made for surface reservoir ages. The double peak indicates at least two distinct stages of discharge of the ice streams that drained the Laurentide Ice Sheet through Hudson Strait during HE1 or, alternatively, the discharge of two independent ice streams containing detrital carbonate. Heinrich Event 1.1 was the larger of the two events and began at ~16.2 ka (15.5–17.1 ka) when the polar North Atlantic was already cold and Atlantic Meridional Overturning Circulation (AMOC) weakened. The younger peak (H1.2) at ~15.1 ka (14.3 to 15.9 ka) was a weaker event than H1.1 that was accompanied by minor cooling. Our results support a complex history for Heinrich Stadial 1 (HS1) with reduction in AMOC during the early part (~20–16.2 ka) possibly driven by melting of European ice sheets, whereas the Laurentide Ice Sheet assumed a greater role during the latter half (~16.2–14.7 ka).This research used data acquired at the XRF Core Scanner Lab at the MARUM–Center for Marine Environmental Sciences, University of Bremen, Germany. This research used samples provided by the International Ocean Discovery Program (IODP). Funding for this research was provided by the UK Natural Environmental Research Council (NERC) to Hodell. The NERC Radiocarbon Facility supported two radiocarbon dates, and Wally Broecker generously supported the remainder with funding from the Comer Family Foundation. Research by Rodríguez-Tovar and Dorador was financed by Project CGL2015-66835-P. B.M. acknowledges support from the CSIC-Ramón y Cajal postdoctoral programme RYC-2013-14073. J.F.E. would like to acknowledge funding under ERC Advanced grant 320750- Nanopaleomagnetism

    A Feedback Quenched Oscillator Produces Turing Patterning with One Diffuser

    Get PDF
    Efforts to engineer synthetic gene networks that spontaneously produce patterning in multicellular ensembles have focused on Turing's original model and the “activator-inhibitor” models of Meinhardt and Gierer. Systems based on this model are notoriously difficult to engineer. We present the first demonstration that Turing pattern formation can arise in a new family of oscillator-driven gene network topologies, specifically when a second feedback loop is introduced which quenches oscillations and incorporates a diffusible molecule. We provide an analysis of the system that predicts the range of kinetic parameters over which patterning should emerge and demonstrate the system's viability using stochastic simulations of a field of cells using realistic parameters. The primary goal of this paper is to provide a circuit architecture which can be implemented with relative ease by practitioners and which could serve as a model system for pattern generation in synthetic multicellular systems. Given the wide range of oscillatory circuits in natural systems, our system supports the tantalizing possibility that Turing pattern formation in natural multicellular systems can arise from oscillator-driven mechanisms

    Automatic Compilation from High-Level Biologically-Oriented Programming Language to Genetic Regulatory Networks

    Get PDF
    Background The field of synthetic biology promises to revolutionize our ability to engineer biological systems, providing important benefits for a variety of applications. Recent advances in DNA synthesis and automated DNA assembly technologies suggest that it is now possible to construct synthetic systems of significant complexity. However, while a variety of novel genetic devices and small engineered gene networks have been successfully demonstrated, the regulatory complexity of synthetic systems that have been reported recently has somewhat plateaued due to a variety of factors, including the complexity of biology itself and the lag in our ability to design and optimize sophisticated biological circuitry. Methodology/Principal Findings To address the gap between DNA synthesis and circuit design capabilities, we present a platform that enables synthetic biologists to express desired behavior using a convenient high-level biologically-oriented programming language, Proto. The high level specification is compiled, using a regulatory motif based mechanism, to a gene network, optimized, and then converted to a computational simulation for numerical verification. Through several example programs we illustrate the automated process of biological system design with our platform, and show that our compiler optimizations can yield significant reductions in the number of genes () and latency of the optimized engineered gene networks. Conclusions/Significance Our platform provides a convenient and accessible tool for the automated design of sophisticated synthetic biological systems, bridging an important gap between DNA synthesis and circuit design capabilities. Our platform is user-friendly and features biologically relevant compiler optimizations, providing an important foundation for the development of sophisticated biological systems.National Institutes of Health (U.S.) (Grant # 7R01GM74712-5)United States. Defense Advanced Research Projects Agency (contract HR0011-10-C-0168)National Science Foundation (U.S.) (NSF CAREER award 0968682)BBN Technologie

    Quantifying the Dynamics of Coupled Networks of Switches and Oscillators

    Get PDF
    Complex network dynamics have been analyzed with models of systems of coupled switches or systems of coupled oscillators. However, many complex systems are composed of components with diverse dynamics whose interactions drive the system's evolution. We, therefore, introduce a new modeling framework that describes the dynamics of networks composed of both oscillators and switches. Both oscillator synchronization and switch stability are preserved in these heterogeneous, coupled networks. Furthermore, this model recapitulates the qualitative dynamics for the yeast cell cycle consistent with the hypothesized dynamics resulting from decomposition of the regulatory network into dynamic motifs. Introducing feedback into the cell-cycle network induces qualitative dynamics analogous to limitless replicative potential that is a hallmark of cancer. As a result, the proposed model of switch and oscillator coupling provides the ability to incorporate mechanisms that underlie the synchronized stimulus response ubiquitous in biochemical systems

    Modular Composition of Gene Transcription Networks

    Get PDF
    Predicting the dynamic behavior of a large network from that of the composing modules is a central problem in systems and synthetic biology. Yet, this predictive ability is still largely missing because modules display context-dependent behavior. One cause of context-dependence is retroactivity, a phenomenon similar to loading that influences in non-trivial ways the dynamic performance of a module upon connection to other modules. Here, we establish an analysis framework for gene transcription networks that explicitly accounts for retroactivity. Specifically, a module's key properties are encoded by three retroactivity matrices: internal, scaling, and mixing retroactivity. All of them have a physical interpretation and can be computed from macroscopic parameters (dissociation constants and promoter concentrations) and from the modules' topology. The internal retroactivity quantifies the effect of intramodular connections on an isolated module's dynamics. The scaling and mixing retroactivity establish how intermodular connections change the dynamics of connected modules. Based on these matrices and on the dynamics of modules in isolation, we can accurately predict how loading will affect the behavior of an arbitrary interconnection of modules. We illustrate implications of internal, scaling, and mixing retroactivity on the performance of recurrent network motifs, including negative autoregulation, combinatorial regulation, two-gene clocks, the toggle switch, and the single-input motif. We further provide a quantitative metric that determines how robust the dynamic behavior of a module is to interconnection with other modules. This metric can be employed both to evaluate the extent of modularity of natural networks and to establish concrete design guidelines to minimize retroactivity between modules in synthetic systems.United States. Air Force Office of Scientific Research (FA9550-12-1-0129

    A Review of Surgical Informed Consent: Past, Present, and Future. A Quest to Help Patients Make Better Decisions

    Get PDF
    Contains fulltext : 87422.pdf (publisher's version ) (Closed access)BACKGROUND: Informed consent (IC) is a process requiring a competent doctor, adequate transfer of information, and consent of the patient. It is not just a signature on a piece of paper. Current consent processes in surgery are probably outdated and may require major changes to adjust them to modern day legislation. A literature search may provide an opportunity for enhancing the quality of the surgical IC (SIC) process. METHODS: Relevant English literature obtained from PubMed, Picarta, PsycINFO, and Google between 1993 and 2009 was reviewed. RESULTS: The body of literature with respect to SIC is slim and of moderate quality. The SIC process is an underestimated part of surgery and neither surgeons nor patients sufficiently realize its importance. Surgeons are not specifically trained and lack the competence to guide patients through a legally correct SIC process. Computerized programs can support the SIC process significantly but are rarely used for this purpose. CONCLUSIONS: IC should be integrated into our surgical practice. Unfortunately, a big gap exists between the theoretical/legal best practice and the daily practice of IC. An optimally informed patient will have more realistic expectations regarding a surgical procedure and its associated risks. Well-informed patients will be more satisfied and file fewer legal claims. The use of interactive computer-based programs provides opportunities to improve the SIC process.1 juli 201
    corecore