740 research outputs found

    Silicon-on ceramic process: Silicon sheet growth and device development for the large-area silicon sheet task of the low-cost solar array project

    Get PDF
    The technical feasibility of producing solar-cell-quality sheet silicon to meet the Department of Energy (DOE) 1986 overall price goal of $0.70/watt was investigated. With the silicon-on-ceramic (SOC) approach, a low-cost ceramic substrate is coated with large-grain polycrystalline silicon by unidirectional solidification of molten silicon. This effort was divided into several areas of investigation in order to most efficiently meet the goals of the program. These areas include: (1) dip-coating; (2) continuous coating designated SCIM-coating, and acronym for Silicon Coating by an Inverted Meniscus (SCIM); (3) material characterization; (4) cell fabrication and evaluation; and (5) theoretical analysis. Both coating approaches were successful in producing thin layers of large grain, solar-cell-quality silicon. The dip-coating approach was initially investigated and considerable effort was given to this technique. The SCIM technique was adopted because of its scale-up potential and its capability to produce more conventiently large areas of SOC

    Assessing the economic impacts of food hubs on regional economies: a framework that includes opportunity cost

    Get PDF
    Includes bibliographical references (pages 168-171).The number of food hubs—businesses that aggregate and distribute local food—in the United States is growing, fueled in part by increasing public support. However, there have been few data-driven assessments of the economic impacts of these ventures. Using an input-output-based methodology and a unique data set from a successful food hub, we measure net and gross impacts of a policy supporting their development. We estimate a gross output multiplier of 1.75 and an employment multiplier of 2.14. Using customer surveys, we estimate that every 1increaseinfinaldemandforfoodhubproductsgeneratesa1 increase in final demand for food hub products generates a 0.11 reduction in purchases in other sectors

    Silicon-on-ceramic process: Silicon sheet growth and device development for the large-area silicon sheet task of the low-cost solar array project

    Get PDF
    The technical feasibility of producing solar cell quality sheet silicon to meet the DOE 1986 cost goal of 70 cents/watt was investigated. The silicon on ceramic approach is to coat a low cost ceramic substrate with large grain polycrystalline silicon by unidirectional solidification of molten silicon. Results and accomplishments are summarized

    A First Comparison of Millimeter Continuum and Mg II Ultraviolet Line Emission from the Solar Chromosphere

    Full text link
    We present joint observations of the Sun by the Atacama Large Millimeter/submillimeter Array (ALMA) and the Interface Region Imaging Spectrograph (IRIS). The observations were made of a solar active region on 2015 December 18 as part of the ALMA science verification effort. A map of the Sun's continuum emission of size 2.4′×2.3′2.4' \times 2.3' was obtained by ALMA at a wavelength of 1.25 mm (239 GHz) using mosaicing techniques. A contemporaneous map of size 1.9′×2.9′1.9'\times 2.9' was obtained in the Mg II h doublet line at 2803.5\AA\ by IRIS. Both mm/submm−λ-\lambda continuum emission and ultraviolet (UV) line emission are believed to originate from the solar chromosphere and both have the potential to serve as powerful and complementary diagnostics of physical conditions in this poorly understood layer of the solar atmosphere. While a clear correlation between mm-λ\lambda brightness temperature TBT_B and the Mg II h line radiation temperature TradT_{rad} is observed the slope is <1<1, perhaps as a result of the fact that these diagnostics are sensitive to different parts of the chromosphere and/or the Mg II h line source function includes a scattering component. There is a significant offset between the mean TBT_B(1.25 mm) and mean TradT_{rad}(Mg II), the former being ≈35%\approx 35\% greater than the latter. Partitioning the maps into "sunspot", "quiet regions", and "plage regions" we find that the slope of the scatter plots between the IRIS Mg II h line TradT_{rad} and the ALMA brightness temperature TBT_B is 0.4 (sunspot), 0.56 (quiet regions), and 0.66 (plage regions). We suggest that this change may be caused by the regional dependence of the formation heights of the IRIS and ALMA diagnostics, and/or the increased degree of coupling between the UV source function and the local gas temperature in the hotter, denser gas in plage regions.Comment: 8 pages, 2 figure

    Role of The Cortex in Visuomotor Control of Arm Stability

    Get PDF
    Whereas numerous motor control theories describe the control of arm trajectory during reach, the control of stabilization in a constant arm position (i.e., visuomotor control of arm posture) is less clear. Three potential mechanisms have been proposed for visuomotor control of arm posture: 1) increased impedance of the arm through co-contraction of antagonistic muscles, 2) corrective muscle activity via spinal/supraspinal reflex circuits, and/or 3) intermittent voluntary corrections to errors in position. We examined the cortical mechanisms of visuomotor control of arm posture and tested the hypothesis that cortical error networks contribute to arm stabilization. We collected electroencephalography (EEG) data from 10 young healthy participants across four experimental planar movement tasks. We examined brain activity associated with intermittent voluntary corrections of position error and antagonist co-contraction during stabilization. EEG beta-band (13–26 Hz) power fluctuations were used as indicators of brain activity, and coherence between EEG electrodes was used as a measure of functional connectivity between brain regions. Cortical activity in the sensory, motor, and visual areas during arm stabilization was similar to activity during volitional arm movements and was larger than activity during co-contraction of the arm. However, cortical connectivity between the sensorimotor and visual regions was higher during arm stabilization compared with volitional arm movements and co-contraction of the arm. The difference in cortical activity and connectivity between tasks might be attributed to an underlying visuomotor error network used to update motor commands for visuomotor control of arm posture

    Diffusion Tensor Imaging Correlates with Short-Term Myelopathy Outcome in Patients with Cervical Spondylotic Myelopathy

    Get PDF
    Objective To determine if spinal cord diffusion tensor imaging indexes correlate with short-term clinical outcome in patients undergoing elective cervical spine surgery for cervical spondylotic myelopathy (CSM). Methods A prospective consecutive cohort study was performed in patients undergoing elective cervical spine surgery for CSM. After obtaining informed consent, patients with CSM underwent preoperative T2-weighted magnetic resonance imaging and diffusion tensor imaging of the cervical spine. Fractional anisotropy (FA) values at the level of maximum cord compression and at the noncompressed C1-2 level were calculated on axial images. We recorded the modified Japanese Orthopaedic Association (mJOA) scale, Neck Disability Index, and Short Form-36 physical functioning subscale scores for all patients preoperatively and 3 months postoperatively. Statistical analysis was performed to identify correlations between FA and clinical outcome scores. Results The study included 27 patients (mean age 54.5 years ± 1.9, 12 men). The mean postoperative changes in mJOA scale, Neck Disability Index, and Short Form-36 physical functioning subscale scores were 0.9 ± 0.3, −6.0 ± 1.9, and 3.4 ± 1.9. The mean FA at the level of maximum compression was significantly lower than the mean FA at the C1-2 level (0.5 vs. 0.55, P = 0.01). FA was significantly correlated with change in mJOA scale score (Pearson r = −0.42, P = 0.02). FA was significantly correlated with the preoperative mJOA scale score (Pearson r = 0.65, P \u3c 0.001). Conclusions Preoperative FA at the level of maximum cord compression significantly correlates with the 3-month change in mJOA scale score among patients with CSM. FA was also significantly associated with preoperative mJOA scale score and is a potential biomarker for spinal cord dysfunction in CSM

    Survey-propagation decimation through distributed local computations

    Full text link
    We discuss the implementation of two distributed solvers of the random K-SAT problem, based on some development of the recently introduced survey-propagation (SP) algorithm. The first solver, called the "SP diffusion algorithm", diffuses as dynamical information the maximum bias over the system, so that variable nodes can decide to freeze in a self-organized way, each variable making its decision on the basis of purely local information. The second solver, called the "SP reinforcement algorithm", makes use of time-dependent external forcing messages on each variable, which let the variables get completely polarized in the direction of a solution at the end of a single convergence. Both methods allow us to find a solution of the random 3-SAT problem in a range of parameters comparable with the best previously described serialized solvers. The simulated time of convergence towards a solution (if these solvers were implemented on a distributed device) grows as log(N).Comment: 18 pages, 10 figure

    Alterations in Cortical Sensorimotor Connectivity following Complete Cervical Spinal Cord Injury: A Prospective Resting-State fMRI Study

    Get PDF
    Functional magnetic resonance imaging (fMRI) studies have demonstrated alterations during task-induced brain activation in spinal cord injury (SCI) patients. The interruption to structural integrity of the spinal cord and the resultant disrupted flow of bidirectional communication between the brain and the spinal cord might contribute to the observed dynamic reorganization (neural plasticity). However, the effect of SCI on brain resting-state connectivity patterns remains unclear. We undertook a prospective resting-state fMRI (rs-fMRI) study to explore changes to cortical activation patterns following SCI. With institutional review board approval, rs-fMRI data was obtained in eleven patients with complete cervical SCI (\u3e2 years post injury) and nine age-matched controls. The data was processed using the Analysis of Functional Neuroimages software. Region of interest (ROI) based analysis was performed to study changes in the sensorimotor network using pre- and post-central gyri as seed regions. Two-sampled t-test was carried out to check for significant differences between the two groups. SCI patients showed decreased functional connectivity in motor and sensory cortical regions when compared to controls. The decrease was noted in ipsilateral, contralateral, and interhemispheric regions for left and right precentral ROIs. Additionally, the left postcentral ROI demonstrated increased connectivity with the thalamus bilaterally in SCI patients. Our results suggest that cortical activation patterns in the sensorimotor network undergo dynamic reorganization following SCI. The presence of these changes in chronic spinal cord injury patients is suggestive of the inherent neural plasticity within the central nervous system

    Percolation model for nodal domains of chaotic wave functions

    Full text link
    Nodal domains are regions where a function has definite sign. In recent paper [nlin.CD/0109029] it is conjectured that the distribution of nodal domains for quantum eigenfunctions of chaotic systems is universal. We propose a percolation-like model for description of these nodal domains which permits to calculate all interesting quantities analytically, agrees well with numerical simulations, and due to the relation to percolation theory opens the way of deeper understanding of the structure of chaotic wave functions.Comment: 4 pages, 6 figures, Late

    Random wave functions and percolation

    Full text link
    Recently it was conjectured that nodal domains of random wave functions are adequately described by critical percolation theory. In this paper we strengthen this conjecture in two respects. First, we show that, though wave function correlations decay slowly, a careful use of Harris' criterion confirms that these correlations are unessential and nodal domains of random wave functions belong to the same universality class as non critical percolation. Second, we argue that level domains of random wave functions are described by the non-critical percolation model.Comment: 13 page
    • …
    corecore