364 research outputs found
Towards an effective potential for the monomer, dimer, hexamer, solid and liquid forms of hydrogen fluoride
We present an attempt to build up a new two-body effective potential for
hydrogen fluoride, fitted to theoretical and experimental data relevant not
only to the gas and liquid phases, but also to the crystal. The model is simple
enough to be used in Molecular Dynamics and Monte Carlo simulations. The
potential consists of: a) an intra-molecular contribution, allowing for
variations of the molecular length, plus b) an inter-molecular part, with three
charged sites on each monomer and a Buckingham "exp-6" interaction between
fluorines. The model is able to reproduce a significant number of observables
on the monomer, dimer, hexamer, solid and liquid forms of HF. The shortcomings
of the model are pointed out and possible improvements are finally discussed.Comment: LaTeX, 24 pages, 2 figures. For related papers see also
http://www.chim.unifi.it:8080/~valle
Ecological assessment of groundwater ecosystems disturbed by recharge systems using organic matter quality, biofilm characteristics and bacterial diversity
International audienc
Micromechanical Properties of Injection-Molded Starch–Wood Particle Composites
The micromechanical properties of injection molded starch–wood particle composites were investigated as a function of particle content and humidity conditions.
The composite materials were characterized by scanning electron microscopy and X-ray diffraction methods. The microhardness
of the composites was shown to increase notably with the concentration of the wood particles. In addition,creep behavior under the indenter and temperature dependence
were evaluated in terms of the independent contribution of the starch matrix and the wood microparticles to the hardness value. The influence of drying time on the density
and weight uptake of the injection-molded composites was highlighted. The results revealed the role of the mechanism of water evaporation, showing that the dependence of water uptake and temperature was greater for the starch–wood composites than for the pure starch sample. Experiments performed during the drying process at 70°C indicated that
the wood in the starch composites did not prevent water loss from the samples.Peer reviewe
Recommended from our members
Chelating water-soluble polymers for waste minimization
Within the DOE complex and in industry there is a tremendous need for advanced metal ion recovery and waste minimization techniques. This project sought to employ capabilities for ligand-design and separations chemistry in which one can develop and evaluate water- soluble chelating polymers for recovering actinides and toxic metals from various process streams. Focus of this work was (1) to develop and select a set of water-soluble polymers suitable for a selected waste stream and (2) demonstrate this technology in 2 areas: removal of (a) actinides and toxic RCRA metals from waste water and (b) recovery of Cu and other precious metals from industrial process streams including from solid catalysts and aqueous waste streams. The R&D was done in 4 phases for each of the 2 target areas: polymer synthesis for scaleup, equipment assembly, process demonstration at a DOE or industrial site, and advanced ligand/polymer synthesis. The TA- 50 site at Los Alamos was thought to be appropriate due to logistics and to its being representative of similar problems throughout the DOE complex
Radiation shielding of protoplanetary discs in young star-forming regions
Interstellar matter and star formatio
Modeling protoplanetary disk evolution in young star forming regions
Interstellar matter and star formatio
Electron transfer dissociation with supplemental activation to differentiate aspartic and isoaspartic residues in doubly charged peptide cations
Star cluster formation: the effects of early forming massive stars and building a bridge between Voronoi mesh and block-structured codes
Interstellar matter and star formatio
- …
