501 research outputs found

    Do Community-Level Models Account for the Effects of Biotic Interactions? A Comparison of Community-Level and Species Distribution Modeling of Rocky Mountain Conifers

    Full text link
    Community-level models (CLMs) aim to improve species distribution modeling (SDM) methods by attempting to explicitly incorporate the influences of interacting species. However, the ability of CLMs to appropriately account for biotic interactions is unclear. We applied CLM and SDM methods to predict the distributions of three dominant conifer tree species in the U.S. Rocky Mountains and compared CLM and SDM predictive accuracy as well as the ability of each approach to accurately reproduce species co-occurrence patterns. We specifically evaluated the performance of two statistical algorithms, MARS and CForest, within both CLM and SDM frameworks. Across all species, differences in SDM and CLM predictive accuracy were slight and can be attributed to differences in model structure rather than accounting for the effects of biotic interactions. In addition, CLMs generally over-predicted species cooccurrence, while SDMs under-predicted cooccurrence. Our results demonstrate no real improvement in the ability of CLMs to account for biotic interactions relative to SDMs. We conclude that alternative modeling approaches are needed in order to accurately account for the effects of biotic interactions on species distributions

    Stand Density and Age Affect Tree-level Structural and Functional Characteristics of Young, Postfire Lodgepole Pine in Yellowstone National Park

    Full text link
    More frequent fire activity associated with climate warming is expected to increase the extent of young forest stands in fire-prone landscapes, yet growth rates and biomass allocation patterns in young forests that regenerated naturally following stand-replacing fire have not been well studied. We assessed the structural and functional characteristics of young, postfire lodgepole pine (Pinus contorta var. latifolia) trees across the Yellowstone subalpine plateaus to understand the influence of postfire stand density and age on tree-level aboveground biomass (AB), component biomass (bole, branch, foliage), partitioning to components, tree-level aboveground net primary productivity (ANPP) and leaf area (LA). Sixty 24- year-old lodgepole pine trees were harvested from 21 sites ranging from 500 to 74,667 stems-ha-1 for development of allometric equations to predict biomass, ANPP and LA. All traits increased nonlinearly with increasing tree basal diameter. Tree-level total AB and component biomass decreased with increasing stand density and increased with age when compared with measurements from 11-year-old trees. Bole partitioning increased with stand density, while foliage and branch wood partitioning declined. Tree-level ANPP and LA decreased significantly with stand density and age. Overall, our results indicate that stand density and age explain much of the variation in tree characteristics and that 24 years after fire, the initial postfire regeneration density is still exerting significant influence on the structure and function of individual trees

    Esperanto for histones : CENP-A, not CenH3, is the centromeric histone H3 variant

    Get PDF
    The first centromeric protein identified in any species was CENP-A, a divergent member of the histone H3 family that was recognised by autoantibodies from patients with scleroderma-spectrum disease. It has recently been suggested to rename this protein CenH3. Here, we argue that the original name should be maintained both because it is the basis of a long established nomenclature for centromere proteins and because it avoids confusion due to the presence of canonical histone H3 at centromeres

    Violent video games and morality: a meta-ethical approach

    Get PDF
    This paper considers what it is about violent video games that leads one reasonably minded person to declare "That is immoral" while another denies it. Three interpretations of video game content a re discussed: reductionist, narrow, and broad. It is argued that a broad interpretation is required for a moral objection to be justified. It is further argued that understanding the meaning of moral utterances – like "x is immoral" – is important to an understanding of why there is a lack of moral consensus when it comes to the content of violent video games. Constructive ecumenical expressivism is presented as a means of explaining what it is that we are doing when we make moral pronouncements and why, when it comes to video game content, differing moral attitudes abound. Constructive ecumenical expressivism is also presented as a means of illuminating what would be required for moral consensus to be achieved

    Environmental Determinants of Recruitment Success of Subalpine Fir (Abies Lasiocarpa) in a Mixed-Conifer Forest

    Full text link
    Understanding the processes that underlie forest resilience is of increasing importance as climate change and shifting disturbance regimes continue to impact western forests. Forest research and management efforts within the low-diversity conifer forests of the U.S. Rocky Mountains have typically focused on relatively monotypic stands dominated by a single cohort, but mixed-conifer stands, such as those codominated by Abies lasiocarpa and Pinus contorta have been less widely studied. The presence of A. lasiocarpa may enhance resilience to fire- and mountain pine beetle–induced mortality and depends on successful A. lasiocarpa recruitment under a range of environmental conditions. The purpose of this study was to quantify the effects of key forest structural characteristics and environmental conditions on recruitment of A. lasiocarpa in a midelevation mixed-conifer forest in the central Rocky Mountains. To address this aim, A. lasiocarpa seedling density, light availability, neighborhood basal area, and soil fertility were measured across 24 plots, and the relative effects of each measured variable, temperature, and precipitation on seedling density were quantified within a Bayesian multilevel regression model. Model results showed nonsignificant effects of climate, light availability, and neighborhood index on seedling density; a significant positive association between seedling density and the interaction between soil fertility and neighborhood index; and a strong negative relationship between seedling density and soil fertility. We posit that the negative association with soil fertility in these nutrient-poor forests reflects an underlying gradient in soil moisture availability that corresponds with water flux pathways. Ultimately, much of the variance in seedling densities was explained by latent plot and year effects, indicating that A. lasiocarpa establishment in this mixed-conifer forest is likely governed by a complex suite of environmental factors that vary across fine spatiotemporal scales

    Genetic analysis of variation in human meiotic recombination

    Get PDF
    The number of recombination events per meiosis varies extensively among individuals. This recombination phenotype differs between female and male, and also among individuals of each gender. In this study, we used high-density SNP genotypes of over 2,300 individuals and their offspring in two datasets to characterize recombination landscape and to map the genetic variants that contribute to variation in recombination phenotypes. We found six genetic loci that are associated with recombination phenotypes. Two of these (RNF212 and an inversion on chromosome 17q21.31) were previously reported in the Icelandic population, and this is the first replication in any other population. Of the four newly identified loci (KIAA1462, PDZK1, UGCG, NUB1), results from expression studies provide support for their roles in meiosis. Each of the variants that we identified explains only a small fraction of the individual variation in recombination. Notably, we found different sequence variants associated with female and male recombination phenotypes, suggesting that they are regulated by different genes. Characterization of genetic variants that influence natural variation in meiotic recombination will lead to a better understanding of normal meiotic events as well as of non-disjunction, the primary cause of pregnancy loss. © 2009 Chowdhury et al

    The arabidopsis DNA polymerase δ has a role in the deposition of transcriptionally active epigenetic marks, development and flowering

    Get PDF
    DNA replication is a key process in living organisms. DNA polymerase α (Polα) initiates strand synthesis, which is performed by Polε and Polδ in leading and lagging strands, respectively. Whereas loss of DNA polymerase activity is incompatible with life, viable mutants of Polα and Polε were isolated, allowing the identification of their functions beyond DNA replication. In contrast, no viable mutants in the Polδ polymerase-domain were reported in multicellular organisms. Here we identify such a mutant which is also thermosensitive. Mutant plants were unable to complete development at 28°C, looked normal at 18°C, but displayed increased expression of DNA replication-stress marker genes, homologous recombination and lysine 4 histone 3 trimethylation at the SEPALLATA3 (SEP3) locus at 24°C, which correlated with ectopic expression of SEP3. Surprisingly, high expression of SEP3 in vascular tissue promoted FLOWERING LOCUS T (FT) expression, forming a positive feedback loop with SEP3 and leading to early flowering and curly leaves phenotypes. These results strongly suggest that the DNA polymerase δ is required for the proper establishment of transcriptionally active epigenetic marks and that its failure might affect development by affecting the epigenetic control of master genes.Fil: Iglesias, Francisco Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Bruera, Natalia Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Dergan Dylon, Leonardo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Marino, Cristina Ester. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Lorenzi, Hernán. J. Craig Venter Institute; Estados UnidosFil: Mateos, Julieta Lisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina. Max Planck Institute for Plant Breeding Research; AlemaniaFil: Turck, Franziska. Max Planck Institute for Plant Breeding Research; AlemaniaFil: Coupland, George. Max Planck Institute for Plant Breeding Research; AlemaniaFil: Cerdan, Pablo Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina. Universidad de Buenos Aires. Departamento de Ciencias Exactas; Argentin

    Genomic Footprints of Selective Sweeps from Metabolic Resistance to Pyrethroids in African Malaria Vectors Are Driven by Scale up of Insecticide-Based Vector Control

    Get PDF
    Insecticide resistance in mosquito populations threatens recent successes in malaria prevention. Elucidating patterns of genetic structure in malaria vectors to predict the speed and direction of the spread of resistance is essential to get ahead of the `resistance curve' and to avert a public health catastrophe. Here, applying a combination of microsatellite analysis, whole genome sequencing and targeted sequencing of a resistance locus, we elucidated the continent-wide population structure of a major African malaria vector, Anopheles funestus. We identified a major selective sweep in a genomic region controlling cytochrome P450-based metabolic resistance conferring high resistance to pyrethroids. This selective sweep occurred since 2002, likely as a direct consequence of scaled up vector control as revealed by whole genome and fine-scale sequencing of pre- and post-intervention populations. Fine-scaled analysis of the pyrethroid resistance locus revealed that a resistanceassociated allele of the cytochrome P450 monooxygenase CYP6P9a has swept through southern Africa to near fixation, in contrast to high polymorphism levels before interventions, conferring high levels of pyrethroid resistance linked to control failure. Population structure analysis revealed a barrier to gene flow between southern Africa and other areas, which may prevent or slow the spread of the southern mechanism of pyrethroid resistance to other regions. By identifying a genetic signature of pyrethroid-based interventions, we have demonstrated the intense selective pressure that control interventions exert on mosquito populations. If this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised

    The Arabidopsis anaphase-promoting complex/cyclosome subunit 8 is required for male meiosis

    Get PDF
    Faithful chromosome segregation is required for both mitotic and meiotic cell divisions and is regulated by multiple mechanisms including the anaphase-promoting complex/cyclosome (APC/C), which is the largest known E3 ubiquitin-ligase complex and has been implicated in regulating chromosome segregation in both mitosis and meiosis in animals. However, the role of the APC/C during plant meiosis remains largely unknown. Here, we show that Arabidopsis APC8 is required for male meiosis. We used a combination of genetic analyses, cytology and immunolocalisation to define the function of AtAPC8 in male meiosis. Meiocytes from apc8-1 plants exhibit several meiotic defects including improper alignment of bivalents at metaphase I, unequal chromosome segregation during anaphase II, and subsequent formation of polyads. Immunolocalisation using an antitubulin antibody showed that APC8 is required for normal spindle morphology. We also observed mitotic defects in apc8-1, including abnormal sister chromatid segregation and microtubule morphology. Our results demonstrate that Arabidopsis APC/C is required for meiotic chromosome segregation and that APC/C-mediated regulation of meiotic chromosome segregation is a conserved mechanism among eukaryotes
    corecore