155 research outputs found

    Phase diagram of CeVSb3 under pressure and its dependence on pressure conditions

    Get PDF
    We present temperature dependent resistivity and ac-calorimetry measurements of CeVSb3 under pressure up to 8 GPa in a Bridgman anvil cell modified to use a liquid medium and in a diamond anvil cell using argon as a pressure medium, respectively. We observe an initial increase of the ferromagnetic transition temperature Tc with pressures up to 4.5 GPa, followed by decrease of Tc on further increase of pressure and finally its disappearance, in agreement with the Doniach model. We infer a ferromagnetic quantum critical point around 7 GPa under hydrostatic pressure conditions from the extrapolation to 0 K of Tc and the maximum of the A coefficient from low temperature fits of the resistivity \rho (T)=\rho_{0}+AT^{n}. No superconductivity under pressure was observed down to 0.35 K for this compound. In addition, differences in the Tc(P) behavior when a slight uniaxial component is present are noticed and discussed and correlated to choice of pressure medium

    Can nanolites enhance eruption explosivity?

    Get PDF
    Degassing dynamics play a crucial role in controlling the explosivity of magma at erupting volcanoes. Degassing of magmatic water typically involves bubble nucleation and growth, which drive magma ascent. Crystals suspended in magma may influence both nucleation and growth of bubbles. Micron- to centimeter-sized crystals can cause heterogeneous bubble nucleation and facilitate bubble coalescence. Nanometer-scale crystalline phases, so-called “nanolites”, are an underreported phenomenon in erupting magma and could exert a primary control on the eruptive style of silicic volcanoes. Yet the influence of nanolites on degassing processes remains wholly uninvestigated. In order to test the influence of nanolites on bubble nucleation and growth dynamics, we use an experimental approach to document how nanolites can increase the bubble number density and affect growth kinetics in a degassing nanolite-bearing silicic magma. We then examine a compilation of these values from natural volcanic rocks from explosive eruptions leading to the inference that some very high naturally occurring bubble number densities could be associated with the presence of magmatic nanolites. Finally, using a numerical magma ascent model, we show that for reasonable starting conditions for silicic eruptions, an increase in the resulting bubble number density associated with nanolites could push an eruption that would otherwise be effusive into the conditions required for explosive behavior

    Pre‐Eruptive Outgassing and Pressurization, and Post‐Fragmentation Bubble Nucleation, Recorded by Vesicles in Breadcrust Bombs From Vulcanian Activity at Guagua Pichincha Volcano, Ecuador

    Get PDF
    Breadcrust bombs formed during Vulcanian eruptions are assumed to originate from the shallow plug or dome. Their rim to core texture reflects the competition between cooling and degassing timescales, which results in a dense crust with isolated vesicles contrasting with a highly vesicular vesicle network in the interior. Due to relatively fast quenching, the crust can shed light on pre- and syn-eruptive conditions prior to or during fragmentation, whereas the interior allows us to explore post-fragmentation vesiculation. Investigation of pre- to post-fragmentation processes in breadcrust bombs from the 1999 Vulcanian activity at Guagua Pichincha, Ecuador, via 2D and 3D textural analysis reveals a complex vesiculation history, with multiple, spatially localized nucleation and growth events. Large vesicles (Type 1), present in low number density in the crust, are interpreted as pre-eruptive bubbles formed by outgassing and collapse of a permeable bubble network during ascent or stalling in the plug. Haloes of small, syn-fragmentation vesicles (Type 2), distributed about large vesicles, are formed by pressurization and enrichment of volatiles in these haloes. The nature of the pressurization process in the plug is discussed in light of seismicity and ground deformation signals, and previous textural and chemical studies. A third population (Type 3) of post-fragmentation small vesicles appears in the interior of the bomb, and growth and coalescence of Type 2 and 3 vesicles causes the transition from isolated to interconnected bubble network in the interior. We model the evolution of viscosity, bubble growth rate, diffusion timescales, bubble radius and porosity during fragmentation and cooling. These models reveal that thermal quenching dominates in the crust whereas the interior undergoes a viscosity quench caused by degassing, and that the transition from crust to interior corresponds to the onset of percolation and development of permeability in the bubble network

    High shock release in ultrafast laser irradiated metals: Scenario for material ejection

    Get PDF
    We present one-dimensional numerical simulations describing the behavior of solid matter exposed to subpicosecond near infrared pulsed laser radiation. We point out to the role of strong isochoric heating as a mechanism for producing highly non-equilibrium thermodynamic states. In the case of metals, the conditions of material ejection from the surface are discussed in a hydrodynamic context, allowing correlation of the thermodynamic features with ablation mechanisms. A convenient synthetic representation of the thermodynamic processes is presented, emphasizing different competitive pathways of material ejection. Based on the study of the relaxation and cooling processes which constrain the system to follow original thermodynamic paths, we establish that the metal surface can exhibit several kinds of phase evolution which can result in phase explosion or fragmentation. An estimation of the amount of material exceeding the specific energy required for melting is reported for copper and aluminum and a theoretical value of the limit-size of the recast material after ultrashort laser irradiation is determined. Ablation by mechanical fragmentation is also analysed and compared to experimental data for aluminum subjected to high tensile pressures and ultrafast loading rates. Spallation is expected to occur at the rear surface of the aluminum foils and a comparison with simulation results can determine a spall strength value related to high strain rates

    Vesiculation and Quenching During Surtseyan Eruptions at Hunga Tonga-Hunga Ha'apai Volcano, Tonga

    Get PDF
    Surtseyan eruptions are shallow to emergent subaqueous explosive eruptions that owe much of their characteristic behavior to the interaction of magma with water. The difference in thermal properties between water and air affects the cooling and postfragmentation vesiculation processes in magma erupted into the water column. Here we study the vesiculation and cooling processes during the 2009 and 2014–2015 Surtseyan eruptions of Hunga Tonga‐Hunga Ha'apai volcano by combining 2‐D and 3‐D vesicle‐scale analyses of lapilli and bombs and numerical thermal modeling. Most of the lapilli and bombs show gradual textural variations from rim to core. The vesicle connectivity in the lapilli and bombs increases with vesicularity from fully isolated to completely connected and also increases from rim to core in transitional clasts. We interpret the gradual textural variations and the connectivity‐vesicularity relationships as the result of postfragmentation bubble growth and coalescence interrupted at different stages by quenching in water. The measured vesicle size distributions are bimodal with a population of small and large vesicles. We interpret this bimodality as the result of two nucleation events, one prefragmentation with the nucleation and growth of large bubbles and one postfragmentation with nucleation of small vesicles. We link the thermal model with the textural variations in the clasts—showing a dependence on particle size, Leidenfrost effect, and initial melt temperature. In particular, the cooling profiles in the bombs are consistent with the gradual textural variations from rim to core in the clasts, likely caused by variations in time available for vesiculation before quenching

    Topological inversions in coalescing granular media control fluid-flow regimes

    Get PDF
    Sintering—or coalescence—of viscous droplets is an essential process in many natural and industrial scenarios. Current physical models of the dynamics of sintering are limited by the lack of an explicit account of the evolution of microstructural geometry. Here, we use high-speed time-resolved x-ray tomography to image the evolving geometry of a sintering system of viscous droplets, and use lattice Boltzmann simulations of creeping fluid flow through the reconstructed pore space to determine its permeability. We identify and characterize a topological inversion, from spherical droplets in a continuous interstitial gas, to isolated bubbles in a continuous liquid. We find that the topological inversion is associated with a transition in permeability-porosity behavior, from Stokes permeability at high porosity, to percolation theory at low porosity. We use these findings to construct a unified physical description that reconciles previously incompatible models for the evolution of porosity and permeability during sintering

    Pressure effects on superconducting properties of single-crystalline Co doped NaFeAs

    Full text link
    Resistivity and magnetic susceptibility measurements under external pressure were performed on single-crystals NaFe1-xCoxAs (x=0, 0.01, 0.028, 0.075, 0.109). The maximum Tc enhanced by pressure in both underdoped and optimally doped NaFe1-xCoxAs is the same, as high as 31 K. The overdoped sample with x = 0.075 also shows a positive pressure effect on Tc, and an enhancement of Tc by 13 K is achieved under pressure of 2.3 GPa. All the superconducting samples show large positive pressure coefficient on superconductivity, being different from Ba(Fe1-xCox)2As2. However, the superconductivity cannot be induced by pressure in heavily overdoped non-superconducting NaFe0.891Co0.109As. These results provide evidence for that the electronic structure is much different between superconducting and heavily overdoped non-superconducting NaFe1-xCoxAs, being consistent with the observation by angle-resolved photoemission spectroscopy.Comment: 6 pages, 6 figure

    Electromagnetic Transmission of Intellectual Property Data to Protect FPGA Designs

    No full text
    International audienceOver the past 10 years, the designers of intellectual properties(IP) have faced increasing threats including cloning, counterfeiting, andreverse-engineering. This is now a critical issue for the microelectronicsindustry. The design of a secure, efficient, lightweight protection scheme fordesign data is a serious challenge for the hardware security community. In thiscontext, this chapter presents two ultra-lightweight transmitters using sidechannel leakage based on electromagnetic emanation to send embedded IPidentity discreetly and quickl

    The UN in the lab

    Get PDF
    We consider two alternatives to inaction for governments combating terrorism, which we term Defense and Prevention. Defense consists of investing in resources that reduce the impact of an attack, and generates a negative externality to other governments, making their countries a more attractive objective for terrorists. In contrast, Prevention, which consists of investing in resources that reduce the ability of the terrorist organization to mount an attack, creates a positive externality by reducing the overall threat of terrorism for all. This interaction is captured using a simple 3×3 “Nested Prisoner’s Dilemma” game, with a single Nash equilibrium where both countries choose Defense. Due to the structure of this interaction, countries can benefit from coordination of policy choices, and international institutions (such as the UN) can be utilized to facilitate coordination by implementing agreements to share the burden of Prevention. We introduce an institution that implements a burden-sharing policy for Prevention, and investigate experimentally whether subjects coordinate on a cooperative strategy more frequently under different levels of cost sharing. In all treatments, burden sharing leaves the Prisoner’s Dilemma structure and Nash equilibrium of the game unchanged. We compare three levels of burden sharing to a baseline in a between-subjects design, and find that burden sharing generates a non-linear effect on the choice of the efficient Prevention strategy and overall performance. Only an institution supporting a high level of mandatory burden sharing generates a significant improvement in the use of the Prevention strategy
    corecore