4,458 research outputs found
Efficient Large-scale Trace Checking Using MapReduce
The problem of checking a logged event trace against a temporal logic
specification arises in many practical cases. Unfortunately, known algorithms
for an expressive logic like MTL (Metric Temporal Logic) do not scale with
respect to two crucial dimensions: the length of the trace and the size of the
time interval for which logged events must be buffered to check satisfaction of
the specification. The former issue can be addressed by distributed and
parallel trace checking algorithms that can take advantage of modern cloud
computing and programming frameworks like MapReduce. Still, the latter issue
remains open with current state-of-the-art approaches.
In this paper we address this memory scalability issue by proposing a new
semantics for MTL, called lazy semantics. This semantics can evaluate temporal
formulae and boolean combinations of temporal-only formulae at any arbitrary
time instant. We prove that lazy semantics is more expressive than standard
point-based semantics and that it can be used as a basis for a correct
parametric decomposition of any MTL formula into an equivalent one with
smaller, bounded time intervals. We use lazy semantics to extend our previous
distributed trace checking algorithm for MTL. We evaluate the proposed
algorithm in terms of memory scalability and time/memory tradeoffs.Comment: 13 pages, 8 figure
Widely tunable optical parametric oscillation in a Kerr microresonator
We report on the first experimental demonstration of widely-tunable
parametric sideband generation in a Kerr microresonator. Specifically, by
pumping a silica microsphere in the normal dispersion regime, we achieve the
generation of phase-matched four-wave mixing sidebands at large frequency
detunings from the pump. Thanks to the role of higher-order dispersion in
enabling phase matching, small variations of the pump wavelength translate into
very large and controllable changes in the wavelengths of the generated
sidebands: we experimentally demonstrate over 720 nm of tunability using a
low-power continuous-wave pump laser in the C-band. We also derive simple
theoretical predictions for the phase-matched sideband frequencies, and discuss
the predictions in light of the discrete cavity resonance frequencies. Our
experimentally measured sideband wavelengths are in very good agreement with
theoretical predictions obtained from our simple phase matching analysis.Comment: 5 pages, 4 figure
Skeletal Muscle PGC-1β Signaling is Sufficient to Drive an Endurance Exercise Phenotype and to Counteract Components of Detraining in Mice
Peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α and -1β serve as master transcriptional regulators of muscle mitochondrial functional capacity and are capable of enhancing muscle endurance when overexpressed in mice. We sought to determine whether muscle-specific transgenic overexpression of PGC-1β affects the detraining response following endurance training. First, we established and validated a mouse exercise-training-detraining protocol. Second, using multiple physiological and gene expression end points, we found that PGC-1β overexpression in skeletal muscle of sedentary mice fully recapitulated the training response. Lastly, PGC-1β overexpression during the detraining period resulted in partial prevention of the detraining response. Specifically, an increase in the plateau at which O2 uptake (V̇o2) did not change from baseline with increasing treadmill speed [peak V̇o2 (ΔV̇o2max)] was maintained in trained mice with PGC-1β overexpression in muscle 6 wk after cessation of training. However, other detraining responses, including changes in running performance and in situ half relaxation time (a measure of contractility), were not affected by PGC-1β overexpression. We conclude that while activation of muscle PGC-1β is sufficient to drive the complete endurance phenotype in sedentary mice, it only partially prevents the detraining response following exercise training, suggesting that the process of endurance detraining involves mechanisms beyond the reversal of muscle autonomous mechanisms involved in endurance fitness. In addition, the protocol described here should be useful for assessing early-stage proof-of-concept interventions in preclinical models of muscle disuse atrophy
Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators
Parametric nonlinear optical processes allow for the generation of new
wavelengths of coherent electromagnetic radiation. Their ability to create
radiation that is widely tunable in wavelength is particularly appealing, with
applications ranging from spectroscopy to quantum information processing.
Unfortunately, existing tunable parametric sources are marred by deficiencies
that obstruct their widespread adoption. Here we show that ultrahigh-Q
crystalline microresonators made of magnesium fluoride can overcome these
limitations, enabling compact and power-efficient devices capable of generating
clean and widely-tunable sidebands. We consider several different resonators
with carefully engineered dispersion profiles, achieving hundreds of nanometers
of sideband tunability in each device when driven with a standard low-power
laser at 1550 nm. In addition to direct observations of discrete tunability
over an entire optical octave from 1083 nm to 2670 nm, we record signatures of
mid-infrared sidebands at almost 4000 nm. The simplicity of the devices
considered -- compounded by their remarkable tunability -- paves the way for
low-cost, widely-tunable sources of electromagnetic radiation.Comment: 10 pages, 4 figures, submitted 1st of November 201
An Algebraic Approach to Linear-Optical Schemes for Deterministic Quantum Computing
Linear-Optical Passive (LOP) devices and photon counters are sufficient to
implement universal quantum computation with single photons, and particular
schemes have already been proposed. In this paper we discuss the link between
the algebraic structure of LOP transformations and quantum computing. We first
show how to decompose the Fock space of N optical modes in finite-dimensional
subspaces that are suitable for encoding strings of qubits and invariant under
LOP transformations (these subspaces are related to the spaces of irreducible
unitary representations of U(N)). Next we show how to design in algorithmic
fashion
LOP circuits which implement any quantum circuit deterministically. We also
present some simple examples, such as the circuits implementing a CNOT gate and
a Bell-State Generator/Analyzer.Comment: new version with minor modification
Excess portal venous long-chain fatty acids induce syndrome X via HPA axis and sympathetic activation
We tested the hypothesis that excessive portal venous supply of long-chain fatty acids to the liver contributes to the development of insulin resistance via activation of the hypothalamus-pituitary-adrenal axis (HPA axis) and sympathetic system. Rats received an intraportal infusion of the long-chain fatty acid oleate (150 nmol/min, 24 h), the medium-chain fatty acid caprylate, or the solvent. Corticosterone (Cort) and norepinephrine (NE) were measured as indexes for HPA axis and sympathetic activity, respectively. Insulin sensitivity was assessed by means of an intravenous glucose tolerance test (IVGTT). Oleate infusion induced increases in plasma Cort (Δ = 13.5 ± 3.6 µg/dl; P < 0.05) and NE (Δ = 235 ± 76 ng/l; P < 0.05), whereas caprylate and solvent had no effect. The area under the insulin response curve to the IVGTT was larger in the oleate-treated group than in the caprylate and solvent groups (area = 220 ± 35 vs. 112 ± 13 and 106 ± 8, respectively, P < 0.05). The area under the glucose response curves was comparable [area = 121 ± 13 (oleate) vs. 135 ± 20 (caprylate) and 96 ± 11 (solvent)]. The results are consistent with the concept that increased portal free fatty acid is involved in the induction of visceral obesity-related insulin resistance via activation of the HPA axis and sympathetic system.
High Throughput siRNA Screening Identifies Phosphatidylinositol 3-kinase Class II Alpha as Important for Production of Human Cytomegalovirus Virions.
High throughput siRNA screening is a useful methodology to identify cellular factors required for virus replication. Here we utilized a high throughput siRNA screen based on detection of a viral antigen by microscopy to interrogate cellular protein kinases and phosphatases for their importance during human cytomegalovirus (HCMV) replication, and identified the Class II Phosphatidylinositol 3-kinase PI3K-C2A as being involved in HCMV replication. Confirming this observation, infected cells treated with either pooled or individual siRNAs targeting PI3K-C2A mRNA produced approximately 10-fold less infectious virus compared to controls. Western blotting and quantitative PCR analysis of infected cells treated with siRNAs indicated that depletion of PI3K-C2A slightly reduced accumulation of late, but not immediate-early or early, viral antigens and had no appreciable effect of viral DNA synthesis. Analysis of siRNA treated cells by electron microscopy and western blotting indicated that PI3K-C2A was not required for production of viral capsids, but did lead to increased numbers of enveloped capsids in the cytoplasm that had undergone secondary envelopment and reduction of viral particles exiting the cell. Therefore, PI3K-C2A is a factor important for HCMV replication and has a role in production of HCMV virions. IMPORTANCE: There is limited information about the cellular factors required for human cytomegalovirus (HCMV) replication. Therefore, to identify proteins involved in HCMV replication we developed a methodology to conduct a high throughput siRNA screen in HCMV infected cells. From our screening data we focused our studies on the top "hit" from our screen, the lipid kinase phosphatidylinositol 3-kinase Class II Alpha (PI3K-C2A), as its role in HCMV replication was unknown. Interestingly, we found that PI3K-C2A is important for the production of HCMV virions and is involved in virion production after secondary envelopment of viral capsids, the encapsidation of HCMV capsids by a lipid bilayer that occurs before virions exit the cell
Conceptualizing throughput legitimacy: procedural mechanisms of accountability, transparency, inclusiveness and openness in EU governance
This symposium demonstrates the potential for throughput legitimacy as a concept for shedding empirical light on the strengths and weaknesses of multi-level governance, as well as challenging the concept theoretically. This article introduces the symposium by conceptualizing throughput legitimacy as an ‘umbrella concept’, encompassing a constellation
of normative criteria not necessarily empirically interrelated. It argues that in order to interrogate multi-level governance processes in all their complexity, it makes sense for us to develop normative standards that are not naïve about the empirical realities of how power is exercised within multilevel governance, or how it may interact with legitimacy. We argue that while throughput legitimacy has its normative limits, it can be substantively useful for these purposes. While being no replacement for input and output legitimacy, throughput legitimacy offers distinctive normative criteria— accountability, transparency, inclusiveness and openness— and points towards substantive institutional reforms.Published versio
Quantum magnetism in the stripe phase: bond- versus site order
It is argued that the spin dynamics in the charge-ordered stripe phase might
be revealing with regards to the nature of the anomalous spin dynamics in
cuprate superconductors. Specifically, if the stripes are bond ordered much of
the spin fluctuation will originate in the spin sector itself, while site
ordered stripes require the charge sector as the driving force for the strong
quantum spin fluctuations.Comment: 4 pages, 3 figures, LaTe
Quantification of Urinary Mevalonic Acid as a Biomarker of HMG-CoA Reductase Activity by a Novel Translational LC-MS/MS Method
Background: Mevalonic acid (MVA), as a product of 3-hydroxy-3-methylglutaryl coenzyme A reductase, represents a potential multipurpose biomarker in health and disease. A translational urinary MVA quantification method was developed, validated and used to demonstrate the diurnal variation of urinary MVA excretion in rats and healthy children. Methods: Urinary MVA was converted to mevalonolactone at pH 2, extracted with ethyl acetate and quantified by reversed-phase liquid chromatography-tandem mass spectrometry. Results: The assay had a dynamic range of 0.0156-10 µg/ml with precision <15% CV, accuracy 85-115% and was transferred between laboratories. Urinary MVA excretion in rats and healthy children displayed a diurnal variation consistent with the known diurnal variation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. Conclusion: Urinary MVA can be quantified accurately over a wide dynamic range by a validated translational and transferable method with biomarker capability
- …
