8,034 research outputs found

    University Scholar Series: Craig B. Clements

    Get PDF
    Groundbreaking Research on Wildfire Weather On November 28, 2012 Craig B. Clements spoke in the University Scholar Series hosted by Provost Ellen Junn at the Dr. Martin Luther King, Jr. Library. Craig Clements is an associate professor in the Department of Meteorology and Climate Science who received a $900,000 National Science Foundation CAREER grant for his work in tracking atmospheric conditions in and around wildfires. His work will better help predict wildfire behavior and conditions that could lead to increased wildfire danger.https://scholarworks.sjsu.edu/uss/1016/thumbnail.jp

    Validation of the Air Force Weather Agency Ensemble Prediction Systems

    Get PDF
    Air Force Weather Agency\u27s (AFWA) Ensemble Prediction Systems (EPS), Global Ensemble Prediction System (GEPS), 20km Mesoscale Ensemble Prediction System (MEPS20) and 4km Mesoscale Prediction System (MEPS4), were evaluated from April to October 2013 for 10 locations around the world to determine how accurately forecast probabilities for wind and precipitation thresholds and lightning occurrence match observed frequencies using Aerodrome Routine Meteorological Reports (METARs) and Aerodrome Special Meteorological Reports (SPECIs). Reliability diagrams were created for each forecast hour detailing the Brier skill score (BSS) to depict EPS performance compared to climatology for each site and score composition through reliability, resolution and uncertainty. To illustrate how the BSS changed, the score and its decomposition were plotted for all forecast hours. This study showed that all three EPS suffered from a lightning overforecasting bias at all locations and most forecast hours. For wind speeds, it was clear that decreased model grid spacing allowed better resolution of terrain features, producing a better BSS. Likewise, precipitation was better resolved with increased horizontal resolution as explicit resolution of precipitation processes outperformed cumulus parameterization schemes

    Stable Kalman filters for processing clock measurement data

    Get PDF
    Kalman filters have been used for some time to process clock measurement data. Due to instabilities in the standard Kalman filter algorithms, the results have been unreliable and difficult to obtain. During the past several years, stable forms of the Kalman filter have been developed, implemented, and used in many diverse applications. These algorithms, while algebraically equivalent to the standard Kalman filter, exhibit excellent numerical properties. Two of these stable algorithms, the Upper triangular-Diagonal (UD) filter and the Square Root Information Filter (SRIF), have been implemented to replace the standard Kalman filter used to process data from the Deep Space Network (DSN) hydrogen maser clocks. The data are time offsets between the clocks in the DSN, the timescale at the National Institute of Standards and Technology (NIST), and two geographically intermediate clocks. The measurements are made by using the GPS navigation satellites in mutual view between clocks. The filter programs allow the user to easily modify the clock models, the GPS satellite dependent biases, and the random noise levels in order to compare different modeling assumptions. The results of this study show the usefulness of such software for processing clock data. The UD filter is indeed a stable, efficient, and flexible method for obtaining optimal estimates of clock offsets, offset rates, and drift rates. A brief overview of the UD filter is also given

    Extreme fire weather associated with nocturnal drying in elevated coastal Terrain of California

    Get PDF
    The second largest fire shelter deployment in U.S. history occurred in August 2003 during the Devil Fire, which was burning in a remote and rugged region of the San Francisco Bay Area, when relative humidity abruptly dropped in the middle of the night, causing rapid fire growth. Nocturnal drying events in the higher elevations along California\u27s central coast are a unique phenomenon that poses a great risk to wildland firefighters. Single-digit relative humidity with dewpoints below -25°C is not uncommon during summer nights in this region. To provide the fire management community with knowledge of these hazardous conditions, an event criterion was established to develop a climatology of nocturnal drying and to investigate the synoptic patterns associated with these events. A lower-tropospheric source region of dry air was found over the northeastern Pacific Ocean corresponding to an area of maximum low-level divergence and associated subsidence. This dry air forms above a marine inversion and advects inland overnight with the marine layer and immerses higher-elevation terrain with warm and dry air. An average of 15-20 nocturnal drying events per year occur in elevations greater than 700m in the San Francisco Bay Area, and their characteristics are highly variable, making them a challenge to forecast

    Diffusion Monte Carlo study of two-dimensional liquid 4^4He

    Full text link
    The ground-state properties of two-dimensional liquid 4^4He at zero temperature are studied by means of a quadratic diffusion Monte Carlo method. As interatomic potential we use a revised version of the HFDHE2 Aziz potential which is expected to give a better description of the interaction between helium atoms. The equation of state is determined with great accuracy over a wide range of densities in the liquid phase from the spinodal point up to the freezing density. The spinodal decomposition density is estimated and other properties of the liquid, such as radial distribution function, static form factor, momentum distribution and density dependence of the condensate fraction are all presented.Comment: 19 pages, RevTex 3.0, 7 figures available upon reques

    Early Aspects at ICSE 2007: Workshop on Aspect-Oriented Requirements Engineering and Architecture Design

    Get PDF
    The “Early Aspects @ ICSE’07” is the 11th workshop in the series of Early Aspects workshops [1] which focuses on aspect identification during the requirements engineering and architecture derivation activities. The specific aim of the present workshop is twofold: (a) to initiate creation of an Early Aspects application demonstration and comparisons benchmark; and (b) to solicit submission of new research

    Mobile Ka-Band Polarimetric Doppler Radar Observations of Wildfire Smoke Plumes

    Get PDF
    Remote sensing techniques have been used to study and track wildfire smoke plume structure and evolution; however, knowledge gaps remain because of the limited availability of observational datasets aimed at understanding finescale fire-atmosphere interactions and plume microphysics. Meteorological radars have been used to investigate the evolution of plume rise in time and space, but highly resolved plume observations are limited. In this study, we present a new mobile millimeter-wave (Ka band) Doppler radar system acquired to sample the fine-scale kinematics and microphysical properties of active wildfire smoke plumes from both wildfires and large prescribed fires. Four field deployments were conducted in autumn of 2019 during two wildfires in California and one prescribed burn in Utah. Radar parameters investigated in this study include reflectivity, radial velocity, Doppler spectrum width, differential reflectivity ZDR, and copolarized correlation coefficient rHV. Observed radar reflectivity ranged between 215 and 20 dBZ in plume, and radial velocity ranged from 0 to 16ms21. Dual-polarimetric observations revealed that scattering sources within wildfire plumes are primarily nonspherical and oblate-shaped targets as indicated by ZDR values measuring above 0 and rHV values below 0.8 within the plume. Doppler spectrum width maxima were located near the updraft core region and were associated with radar reflectivity maxima

    Excitations in confined helium

    Full text link
    We design models for helium in matrices like aerogel, Vycor or Geltech from a manifestly microscopic point of view. For that purpose, we calculate the dynamic structure function of 4He on Si substrates and between two Si walls as a function of energy, momentum transfer, and the scattering angle. The angle--averaged results are in good agreement with the neutron scattering data; the remaining differences can be attributed to the simplified model used here for the complex pore structure of the materials. A focus of the present work is the detailed identification of coexisting layer modes and bulk--like excitations, and, in the case of thick films, ripplon excitations. Involving essentially two--dimensional motion of atoms, the layer modes are sensitive to the scattering angle.Comment: Phys. Rev. B (2003, in press

    Evaluation of WRF-Sfire Performance with Field Observations from the FireFlux experiment

    Get PDF
    This study uses in-situ measurements collected during the FireFlux field experiment to evaluate and improve the performance of coupled atmosphere-fire model WRF-Sfire. The simulation by WRF-Sfire of the experimental burn shows that WRF-Sfire is capable of providing realistic head fire rate-of-spread and the vertical temperature structure of the fire plume, and, up to 10 m above ground level, fire-induced surface flow and vertical velocities within the plume. The model captured the changes in wind speed and direction before, during, and after fire front passage, along with arrival times of wind speed, temperature, and updraft maximae, at the two instrumented flux towers used in FireFlux. The model overestimated vertical velocities and underestimated horizontal wind speeds measured at tower heights above the 10 m, and it is hypothesized that the limited model resolution over estimated the fire front depth, leading to too high a heat release and, subsequently, too strong an updraft. However, on the whole, WRF-Sfire fire plume behavior is consistent with the interpretation of FireFlux observations. The study suggests optimal experimental pre-planning, design, and execution of future field campaigns that are needed for further coupled atmosphere-fire model development and evaluation
    • …
    corecore