This study uses in-situ measurements collected during the FireFlux field
experiment to evaluate and improve the performance of coupled atmosphere-fire
model WRF-Sfire. The simulation by WRF-Sfire of the experimental burn shows
that WRF-Sfire is capable of providing realistic head fire rate-of-spread and
the vertical temperature structure of the fire plume, and, up to 10 m above
ground level, fire-induced surface flow and vertical velocities within the
plume. The model captured the changes in wind speed and direction before,
during, and after fire front passage, along with arrival times of wind speed,
temperature, and updraft maximae, at the two instrumented flux towers used in
FireFlux. The model overestimated vertical velocities and underestimated
horizontal wind speeds measured at tower heights above the 10 m, and it is
hypothesized that the limited model resolution over estimated the fire front
depth, leading to too high a heat release and, subsequently, too strong an
updraft. However, on the whole, WRF-Sfire fire plume behavior is consistent
with the interpretation of FireFlux observations. The study suggests optimal
experimental pre-planning, design, and execution of future field campaigns that
are needed for further coupled atmosphere-fire model development and
evaluation