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Kalman filters have been used for some time to process clock measurement

data. Due to instabilities in the standard Kalman filter algorithms, the results

have been unreliable and difficult to obtain. Often, in order to obtain reasonable

results, the data has had to be manually edited, the filter fine tuned, or the model

adjusted by the analyst. During the past several years, stable forms of the Kalman

filter have been developed, implemented, and used in many diverse applications.

These algorithms, while algebraically equivalent to the standard Kalman filter, ex-

hibit excellent numerical properties. Two of these stable algorithms, the Upper

triangular-Diagonal (UD) filter and the Square Root Information Filter (SRIF),

have been implemented to replace the standard Kalman filter used to process data

from the DSN hydrogen maser clocks. The data are time offsets between the clocks

in the DSN, the timescale at the National Institute of Standards and Technology

(NIST), and two geographically intermediate clocks. The measurements are made

by using the GPS navigation satellites in mutual view between clocks. The filter

programs allow the user to easily modify the clock models, the GPS satellite de-

pendent biases, and the random noise levels in order to compare different modeling

assumptions.

The results of this study show the usefulness of such software for processing

clock data. The UD filter is indeed a stable, efficient, and flexible method for

obtaining optimal estimates of clock offsets, offset rates, and drift rates. A brief

overview of the UD filter is also given.

I. Introduction

The requirements of the DSN-complex clocks are that
each clock be maintained within 10 microseconds of Co-

ordinated Universal Time (UTC) as realized at the Na-

tional Institute of Standards and Technology (NIST), with
a knowledge of 1 microsecond and that the rate of each

clock be kept within +IE - 12df/f with a knowledge of
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+3E- 13df/f. The quantity df/f is known as the frac-
tional frequency deviation where

dflf _ f_ - fo
fo

and f,n is the measured frequency and f0 is the reference

frequency. Also there is a requirement that a permanent

record be kept of the synchronization and syntonization

of the DSN-complex clocks. In order to meet these re-

quirements, the time and frequency offset to UTC (NIST)

is monitored using the Global Positioning System (GPS)

navigation space vehicles. The goal (not yet realized) is

to adjust the rates of all the clocks at the same time at

approximately 200-day intervals. The clock rates (frequen-

cies) are adjusted when they are above UTC (NBS) by a

certain amount to below, and then allowed to drift through

zero rate offset from UTC (NIST) until they are again high

enough to require adjustment. This technique, done with

some care, allows one to keep the clocks within the re-

quired time and frequency offset limits and still not have

any jumps in the time offset. All of the drift rates of

the hydrogen masers are about the same, therefore, the

complex clocks can be kept in close synchronization and

syntonization.

Monitoring of the DSN-complex clocks is done by the

operations analyst at JPL. Adjustments of the clocks is

recommended by the operations analyst with the advice

of the engineering staff. The adjustment is scheduled af-
ter a check of the users of the DSN and is made during

a maintenance period at the complex. The actual adjust-
ment is made by the engineering staff at the complex. It

is assumed that the drift of the hydrogen maser rate is

due to cavity drift, therefore, rate adjustments are made

by adjusting the varactor, thereby changing the apparent

cavity size of the hydrogen maser.

At critical times during some projects (such as the

Voyager Uranus encounter), it is desirable to have the

clocks synchronized and syntonized more closely than the

above specifications. When this is the situation, the oper-

ations analyst will predict the time and rate of the DSN

clocks 30 to 90 days prior to the encounter date and set
the rate to allow the clocks to drift to the near zero time

and rate offset by the critical time. At the time of the

Voyager Uranus encounter, JPL engineering staff used a

Kalman filter to predict the clock offset 60 days into the

future with excellent results [3].

At JPL, a Kalman filter has been used to process
clock offset measurements but it has never been used oper-

ationally. The present operational environment for clock

management in the DSN is a personal computer with a
considerable amount of manual intervention. The data is

handled in weekly batches. By 1992 the process is to be
transferred to the Network Frequency and Timing subsys-

tem (NFT), which is a part of the DSN Frequency and

Timing system (DFT). The flow of data and estimate up-

dates will occur more often (perhaps as often as once per

hour) so as to allow operations to be able to monitor clock

performance in near real time. This will require a fairly

robust processing environment with automatic elimination
of outliers and other techniques to make the process as

autonomous as possible. It is expected that operations-

analyst intervention will be relegated to filter adjustments

in response to scheduled changes of time or rate in any of

the clocks being entered into the filter parameters.

The operations analysts will have the opportunity to
do postanalysis of the data. In the near future, it is ex-

pected that some data will continue to be available on a

weekly basis and that better ephemerides will be available

several weeks after the fact. At this time, use of the fil-

ter/smoother by the operations analyst can produce better
estimates of the clock parameters for archiving. To achieve

these goals, a robust filter and smoother program is under

development at JPL. The results reported in this article
were obtained by running this program with data as de-

scribed in the next section. No "fine tuning" adjustments

or manual data editing were performed. The output, how-

ever, was excellent. The filter used in the JPL program

is the numerically stable Upper triangular-Diagonal (UD)
form of the Kalman filter. The UD filter has been under

development for several years [1] and has earned a repu-
tation for being accurate and efficient. The more tradi-
tional Kalman formulation has been known for some time

to be numerically unstable. That is, due to rounding errors

within the computer, the results produced by the filter pro-

gram are sometimes completely wrong. The smoother used
in this code is a recent improvement [2] of the Rauch-Tung-

Streibel (RTS) smoother [5]. The revised RTS smoother
is also robust and accurate.

The filter and smoother programs make use of subrou-

tines from the Estimation Subroutine Library (ESL). This
is a collection of FOI_RAN77 subroutines for construct-

ing filters and smoothers. The routines in the ESL have

been carefully coded and tested to ensure their accuracy

and reliability. Overall, the goal is to produce optimal es-

timates of clock parameters without manual intervention.

The results of this first attempt are extremely encouraging.
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II. Clock Measurements

There is an NIST-designed GPS timing receiver lo-

cated at each complex. A timing pulse from the complex

master clock is fed to each receiver so that the data output

from the receiver is the offset of the complex master clock

to GPS timescale. The receivers are maintained on the mu-

tual view schedule, which is generated by the Bureau Inter-

national des Poids et Measures (BIPM) in Paris, France.

These data are kept in a database along with data from

UTC (RRL) and UTC (TAO) in Japan, UTC (NIST),

and the NIST cesium clock at WWVH Hawaii, U. S. The

data from Japan are obtained from the GE MKIII cata-

logue, which is administered worldwide by the BIPM and

inside the U. S. by the United States Naval Observatory

(USNO). Each of the data lines is tagged to indicate the

receiver from which it came and then placed in a file and

stored on a disk in a personal computer. There is one file

for each day, and it is named by Modified Julian Day. 1

The first process is to take the first difference of the

data to obtain the differences between the clocks on the

ground, thus eliminating the space vehicle clocks. There

are six clocks used; because of the geometry of the clock

locations there are 11 possible mutual views available

(Fig. 1). A program is used to produce a file which con-

tains as entries the station pair, the satellite number, the

MJD, the time (second) the data was collected, and the
difference in time in tenths of nanoseconds between the

first and second clock. (The above format could easily be

adapted to include clock difference data from other sources

such as two-way time coordination.) Data was generated

by this program from MJD 47000 to 47132. There were

approximately 4000 measurements in the data set.

III. Mathematical Model

In order to describe the mathematical model used for

this analysis, the following notation is introduced:

si(t): the clock offset at station i. That is, si = ci-T,

where ci is the clock reading at station i and T is the

"true" time. For this analysis, "true" time is taken to

be the time given by UTC (NIST).

ri(t): the clock offset rate, also called the frequency

error. This is just the time derivative of the offset,

i.e., ri = dsi/dt.

1 The Modified Julian Day (MJD) is a continuous day count
with an iaitial epoch of 0000 hours UT on November 17, 1858.

di(t): the drift rate, that is, the second derivative of

the offset, di = d2si/dt 2.

him(t): the measurement biases. These depend on the

two stations, i and k, and on the satellite, l, being ob-

served. These biases will be explained in more detail

• later.

The dynamics model describes how the above quan-

tities change over time. This is expressed as follows:

hi(t) = ri(t) (1)

÷,(t) = d,(t) (2)

d (t) = wi(t) (3)

where • denotes time differentiation, and wi(t) is white

noise, with zero mean and known power spectral density

(psd) W. That is,

E[wi(t)wi(r)] = Wdf(t- r) (4)

where E[-] is the expected value operation, and where 6 is

the Dirac delta function. Note that Eqs. (1) and (2) are

just restatements of the definitions of ri and di. Equa-

tion (3) says that the rates are "approximately" constant.

In order to apply a discrete filter to this problem,

Eqs. (1-3) must be put into the form of a discrete dynamics

equation

z_(t + At) = _(t, At)x_(t) + w(t) (5)

where z_ denotes a vector with components that include

si, ri, di for each station. Note that all of these quanti-

ties are time-dependent; however, to simplify the notation,

this dependence will often be suppressed. The matrix _,

called the transition matrix, is determined by writing out

a discrete form of Eqs. (1-3). A simple way to do this,

for example, at least for the offsets and rates, is to use a

discrete form of Taylor's Theorem:

s,(t + At) = s,(t) + ,,(t)zxt + 0.5d (t)Zxt2 (6)

,,(t + at) = ,,(t) + d,(t)At (7)
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For the drift rates, this same approach produces

if'd,(t + At) = d,(t) + w,(r)dr (8)

where wi(t) represents the random noise. However, the
effects of the noise on the drift rates are shown directly

in Eq. (8), but this same noise also affects the offsets and

frequency errors because of the presence of di(t) in Eqs. (6)

and (7). As written above, however, there will be a delay,
caused by the time discretization, before the noise at time

t propagates into the offset and rate. To avoid this delay,

noise terms are included directly in the equations for si

and ri. This is done by using the continuous form of the

transition matrix to propagate the noise over the interval
t to t + At. That is, if the noise that enters the continuous

system at time t is given by the vector

w(t)= T

where wr(t) is white noise with zero mean and psd Wr,

then the integrated effect of the noise at time t + At will
be the vector

q(t + At) = (q,, qr, qa) T

where (q,, q_,q,) T _ N(O,Q) and

[: :o ]O = E (_ (At -- r) w(r)dr wT (a)_T(At -- a)da

r:':' ]= E t_° .,0 ¢(r)_(At -- ,-)_r(At _ _)¢r(_)a_er

-- (0.5r 2, r, 1) T Wr(0.5r 2, r, 1)dr (9)

since

1 t 0.5t 2"
¢(t)= 0 1 t

0 0 1

and E[wTwr] = Wr. The integration in Eq. (O) gives

Q= w_

_at 3 {At 2 At

(10)

Thus the discrete dynamics model for these filter states is

(s< (s<,)r,(t + At) ] = ¢_ r,(t)
d,(t + At)] di(t)

+ wi (11)

where

@i = 1 t

0

(12)

wi " N(O, Qi), and Qi is given by Eq. (10). There will be a

transition, of the form of Eq. (11), for each station. Thus,

the full transition matrix (I) in Eq. (5) will have blocks of

the form of Eq. (12) on its diagonal. The process noise

term, w(t), in Eq. (5) will have as its covariance matrix a

block diagonal matrix, with 3 x 3 matrices of the form of

Eq. (10) on the diagonal.

The measurements to be used for estimating the off-

sets, drifts, and drift rates are the differences in clock val-

ues from the GPS times, as measured at two different sta-

tions. That is, the measurements are

which are assumed to be of the form

+ bikt(tj) + vik(tj)

= c,(t¢) - ck(t_) + b,k,(ti) + v,k(t¢) (13)

where, as defined earlier, ci(tj) is the clock reading at sta-

tion i at time tj. The fact that s_(tj) = c_(tj) - NIST(t1)
allows one also to write this as
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z,,,(,,)_-(c,(t,)- (c,(,,)-
+ + v k(t )

= s (ti) - + b kt(ti) +

The first expression is used to obtain the measurement

data as described in Section II. That is, the data actu-

ally used for the analysis are values for ci(tj)- GPSt(tj).
However, for the filter/smoother, the measurements are as-

sumed to be of the second form, where the biases, bikt(tj),

satisfy the trivial dynamics equation

bikt(t+At) = bikt(t) (14)

and the measurement noise, vi_(tj), is, as usual, a nor-

mally distributed zero mean random variable with con-

stant variance r. The biases are appended to the "core
states" to obtain the actual state vector used in the filter:

X = (Sl, rl, dl, s2, r2, d2,..., sin, rm, din, bill, bl12, b113, • • .)

The transition matrix will have an identity matrix at-

tached to it to reflect Eq. (14). Then the measurements
can be written in standard form as

zj = Hjz__i + vj (15)

where H i is a 1 x n measurement matrix, consisting, in
this case, of two positive ones and a negative one, in ap-

propriate positions. For example, a measurement based

on observations from stations 1 and 3, and satellite 6, will
have a measurement matrix

H = (1,0,0,0,0,0,-1, 0,0,... ,0, 1,0,...)

where the final one appears in the position corresponding

to bias b13 6.

IV. The UD Form of the Kalman Filter

The Kalman Filter has become the standard tool for

computing optimal estimates of a state vector, x_(t), gov-
erned by a mathematical model of the form of Eqs. (5) and

(15). To describe the form of the filter that is of interest

here, the following notation will be used:

_klj: estimate of z__(tk) using data up to time tj

Pklj: covariance matrix for the error in z_klj as an ap-
proximation to z_(tk)

The Kalman Filter time update, also called the prediction

step is

Xklk-1 = _k_k-llk-1

Pklk-1 =  kPk-alk-l  + Qk

(16)

(17)

The measurement update is accomplished via the following

set of equations:

Bk = HkPklk-xH [ + Rk (18)

Kk = Pklk-IHT B[ 1 (Kalman gain) (19)

Pklk = (I--gkg_)Pklk-1 (20)

vk = zk -- Hkxklk-1 (innovations) (21)

_-klk = x--kl_-I + Kkvk (22)

The numerical instability of the Kalman equations, as

noted in Section I, is due to the structure of these equa-

tions. The most common indication that something has

gone wrong is when rounding error causes Pklk to be not
positive definite. Note that it is not clear from these equa-

tions that Pklk is even symmetric.

The UD form of the Kalman Filter is algebraically

equivalent to the above equations, but has much better nu-

merical properties. It is based on the fact that any positive

definite matrix P can be written as a product of matrices

P = UDU T (23)

where U is an upper triangular matrix with ones on the di-

agonal, and D is a diagonal matrix, with positive diagonal
elements. The idea behind the UD formulation is to start

with the UD factors of P010, then compute the factors of
all the remaining covariances, without ever computing the

covariances themselves. It can be shown that by avoiding

the covariances, the accuracy of the results is greatly im-

proved. On the other hand, if the covariances are needed

for output they can be easily obtained by simply multiply-

ing the factors together.
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To describe the time update in UD form, assume that

the factors of Pklk are known from the previous step. That
is, U_Ik and Dklk have already been computed, where

Pklk = U_IkDklkU_Ik (24)

Then z_k+ll k is computed just as in the Kalman formula-
tion; but the equation for Pk+llk becomes

Pk+lfk = OkPkl_ OT + Qk

T T
= _kUkl_DklkU_l_¢k + Qk (25)

Since (I>k is upper triangular, so is the product (I)kUklk.

Hence, if Qk were zero, then the factors of Pk+llk would

be just

Rk Dk R T

where

Rk = <I)kUklk (26)

In order to account for the process noise, Qk is factored
into its UD factors

Qk = UqDqU [

which can also be written as

Qk = _ diqiq T (27)
i=1

where qi is the ith column of Uq. Then Eq. (25), using

Eqs. (26) and (27) becomes

n

Pk+ll_ = RkDkRk + Z diqiq_
i----1

(28)

Now the time update step is completed by finding the UD

factors of Pk+llk. This is done by a series of "rank one"
adjustments to previous factors. That is, consider the gen-

eral problem: given factors R, D, compute the factors of
the matrix

RDR T Jr dqq T

where d is a positive scalar, and q is a vector.

The matrix dqq T is a matrix of rank one. Hence dqq T

is called a "rank one" adjustment to RDR T. There is a

very accurate and efficient algorithm for computing the

factors of this new matrix, given the factors R, D, and the

quantities d and q. It is important here that the factors

are not multiplied together, as this would destroy the nu-

merical accuracy. This rank-one update algorithm, called

the Turner-Agee Algorithm [1], is applied repeatedly to

Eq. (28) to complete the time update step of the filter.

Next, consider the measurement update, as given in

the Kalman form by Eqs. (18-22). The Kalman equation

can be used to process vector measurements. However, the
UD form is more efficient if the measurements are scalars.

In this case, in the measurement update equations, Bk is

a scalar, as is vk, and K is a vector. The measurement

update is done several times, once for each scalar mea-

surement for each time update. After the previous time

update, the factors U_lk_l and Dklk-1 of Pklk-1 are avail-
able. The (scalar) Bk as defined by Eq. (18) is computed
as follows:

T T
Bk = HkUklk_lDklk-xUklk_lHk + Rk

T D= Yk klk-lYk "+ Rk

where

T T
Yk = Uklk-lHk

is a vector. Next, Eqs. (19) and (20) are written as

Pkl k = (I -- KkHk)Pktk_ 1

1
= Pklk-1 -- "K-Pklk-xHTHkPklk-1

Dk

= Ukl__lDklk_lU_k_ 1

1 U_IJ:_ ' Dk,k-, U_:_, H_ HkUkl_-, D_,__, U_F._ ,
B_

1 vvT]u__ ' (29)= U,_I__, [D_I_-x - _-

where V is the vector defined by

V = D_I___U_I___H [
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All that remains is to compute the factors U_, Dr of

Dtlk_ 1 - B._VV T (3O)

Then it follows that

uTu TPklk = Uklk-IUv D,_ v klk-1

Uklk D,-Ik U,._k

(31)

Notice that Eq. 30 is a rank-one modification of a diagonal

matrix. Hence its factors can be computed accurately and
efficiently, just as was done in the time update.

While this UD formulation may seem more compli-

cated than the relatively simple matrix equations of the

Kalman form (Eqs. 16-22), a computer program to imple-

ment the UD filter is very straightforward. Two special
subroutines are needed:

(1) A subroutine to efficiently compute the product of two

upper triangular matrices, such as _k Uk

(2) A subroutine to adjust the factors of a matrix by

a rank-one addition: given factors U, D, a positive

scalar c, and a vector y, compute the factors of UDU T
-_-cyy T

Then the time update is done by the following steps:

(1) Compute R = @kU (sometimes called the determin-

istic update)

(2) For each process noise term diqiq T, update the factors

using the rank-one adjustment routine

The measurement update is also broken down into a series

of simple steps, one for each scalar measurement:

(1) Compute the scalar B = yT Dy + r where y = UT H T

(2) Use the rank-one adjustment routine to compute the

factors of D - _VV T where V = DUTH T

(3) Combine these factors with the previous factors, ac-

cording to Eq. 31

V. Filter Implementation

In addition to the clock measurement data, as de-

scribed in Section II, the filter routine must be given the

following information:

(1) Prior estimates of the state vector

(2) Uncertainties associated with the state estimates

(3) Process-noise standard deviations

(4) Measurement-noise standard deviations

Generally, the filter is somewhat insensitive to prior

estimates of the state; hence, they are usually initialized at

zero. The uncertainties must be large enough so that the

filter will accept the measurement data and use it to adjust

the state estimates, except that the offsets for the NIST

station should remain close to zero. The process noise

can depend on the station; however, for the results of Sec-

tion VI, all stations were given the same amount of noise.

Similarly, the measurement noise can be made a function

of the stations and the space vehicle. For simplicity during
this first analysis, however, the measurement noise uncer-

tainty was assumed to be the same for all measurements.

In order to run the smoother, certain information

must be saved at each measurement update time. Thus,

to limit the amount of storage required to run the filter

and smoother, the program was set up to process mea-
surements in so-called "mini-batches." Each mini-batch

consists of all measurements obtained during a fixed time-

span, say one day, or a half a day. The midpoint of this

timespan is chosen as the time of the update (also called

the "epoch time"). The measurements within the mini-

batch are translated to the epoch time by using the same

transition matrix, _(tl,t2), as is used in the dynamics

equation. More precisely, suppose that the actual mea-
surement is

Z(tl) -" Hx(tl) + w (32)

where tl denotes the time at which the measurement was

taken. Let t2 be the epoch time for this mini-batch. Then,

if it is assumed that the timespan for this mini-batch is

sufficiently short, so that the integrated effect of the noise

is negligible, one can write

• = (33)

so that Eq. (32) becomes

(34)
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That is, the measurement z(tl) becomes a measure-
ment of the state at the epoch time, but with the measure-

ment matrix given by H_ instead of just H. It is impor-
tant to realize that this use of mini-batches can change the

filter results because it assumes that the effect of the pro-

tess noise over the timespan of the mini-batch is negligible.

The code that was developed allows the user to select one

or more mini-batches per day, or to process each measure-
ment as it is received.

The filter/smoother was implemented in FORTRAN-

77, making use of routines from the Estimation Subroutine

Library (ESL) to do most of the numerical computations.
The UD form of the Kalman filter, as described in Sec-

tion IV was used for the filter; the smoother made use

of Bierman's modification of the RTS smoother [2]. The

general structure of the program is as follows:

(1) Read a namelist file to initialize the filter:

Start and stop times

Maximum number of measurements to process

Initial error covariances and state estimate

(2) For each measurement:

If new minibatch,

(a) Do time update

(b) Print estimates and estimate error standard de-
viations

(c) Translate measurements to epoch time and do
the measurement update; write the smoother

gains to a file for later use

(3) After all measurements have been processed, print out
the correlation coefficients

(4) If the smoother has been requested, run the smoother
back to the start time

The results of Section VI were obtained by running

the program with 6 stations, 11 station pairs, and 6 satel-
lites. Hence the filter state vector has 84 components. An

important feature of the filter implementation is the data

editing capability. Before each measurement is actually
included into the estimate, a test of the measurement's

consistency with past measurements is performed. This

is done as follows. First the residual (or innovations) as

defined by Eq. (21) is computed, as is the variance of this

residual which is just the quantity Bk defined by Eq. (18).

If the square of the residual divided by its variance is less

than a user-specified tolerance, then the measurement is

accepted and used to update the current estimates. For
the results described in Section VI, a tolerance of 400 was

used. This means that a measurement was rejected only

if its residual was more than 20 standard deviations away

from its mean value of zero.

VI. Numerical Results

The numerical results described in this section were

obtained by running the filter and smoother on the data

described in Section II. Approximately 10 data points were

rejected by the data editor that is built into the filter. Fig-

ure 2 gives an overview of the results of the smoother. This

figure shows the offsets from UTC (NIST) of the three
clocks in the DSN. This is a useful display for the oper-

ations analyst. It can be used to tell when adjustments
to the rates are in order. Notice that a rate adjustment

would have been appropriate around MJD 47080; however

an adjustment was not made until MJD 47130. The Allan

variances of the smoother results, shown in Fig. 3, are con-

sistent with those reported in [4], but are somewhat better.

It is felt that these variances can be further improved with

better modeling.

In order to contrast the output from the smoother

with the input to the filter, see Fig. 4(a). This shows

the raw data for the California clock, with the smoother

results superimposed. A rate of 1.2E- 13 was removed

from both plots. The smoother nicely bridges a gap in
the data at about MJD 47050. During this gap, the stan-

dard deviations computed by the smoother increased from

about 4 nanoseconds, on MJD 47046, to 40 nanoseconds

on MJD 47052, then dropped back to 4.4 nanoseconds on
MJD 47053. Other data gaps were also handled well. This

ability of the filter/smoother to bridge data gaps will be

important for operational uses. Figure 4(b) shows a super-

position of the results produced by the JPL smoother and

the NIST filtered estimates. Again, the 1.2E- 13 rate has

been removed from both results. The agreement is quite

good, with less than 8 nanoseconds difference. The con-
sistent bias, with the JPL results slightly lower, may be

a result of the way in which the space vehicle biases are
handled.

The offset rate of the complex clocks is the most im-

portant parameter from the operational point of view.

Presently, the rate is determined by taking the mean of all
the GPS measurements for ten days, then doing a least-

squares linear fit and using the slope of that fit as an esti-
mate of the rate.
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The results of these "hand calculations" are shown as

dots in Fig. 5. Generally, there is good agreement between

these results and those produced by the filter/smoother. A
careful examination of the times at which the hand calcu-

lations differ noticeably from the smoother results revealed

two reasons for these discrepancies. For example, in the

vicinity of MJD 47060-47070, there was very little data

for the clock in Spain. This caused the smoother to re-

port a large uncertainty in its rates over this interval, and

explains the difference between the smoother output and

the hand calculation shown in Fig 5(c). The point ob-
tained by the hand calculations for the clock in Australia

on MJD 47070 was found, on closer examination, to have
been calculated incorrectly. The correctly calculated value

is very close to that produced by the smoother.

VII. Conclusions and Future Work

The UD form of the Kalman Filter appears to solve

many of the problems encountered in the past with pro-

cessing clock data on a routine basis. The numerical stabil-
ity of the filter/smoother provides an accurate and reliable

method for computing optimal estimates of the offsets, off-

set rates, and drift rates. The automatic data editing fea-

ture removes bad data points appropriately.

The first several days worth of the data that were used

for this study seemed to be very poor. For this reason,

data corresponding to the first four days were skipped.

As a comparison, this same data was also processed by

using a Square Root Information Filter (SRIF). The SRIF

is an even more numerically reliable form of the Kalman
Filter. This increased reliability, however, is attained at

the cost of an increase in computational time. The SRIF

was able to handle the bad data at the beginning of the

data set with no problems. Since computer run-time is of

little concern for this application, it may be advisable to

replace the UD filter with a SRIF.

Possible improvements to the mathematical model

used in the filter would be of interest. For example, it

is clear that the assumption about the biases being con-

stant is incorrect. An improved model would allow the

biases to be time varying. The rate at which they should

vary, however, would have to be determined by statistical

parameter estimation techniques, such as maximum likeli-

hood estimation. Also, in the current model, all clocks are
treated as if they were identical. In fact there are three

different types of clocks in the DSN. Special characteristics

of the clocks could be taken into account to improve the

accuracy of the model.
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Fig. 1. Eleven possible mutual views used in the DSN
time and frequency coordinates.
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