We present the first ground-based U' (3410 angstroms) images of Ultraluminous
Infrared Galaxies (ULIGs). Strong U' emission (median total M_U' = -20.8) is
seen in all systems and in some cases the extended tidal features (both the
smooth stellar distribution and compact star-forming features) contribute up to
60-80% of the total flux. The star-forming regions in both samples are found to
have ages based on spectral synthesis models in the range 10-100 Myrs, and most
differences in color between them can be attributed to the effects of dust
reddening. Additionally, it is found that star-formation in compact knots in
the tidal tails is most prominent in those ULIGs which have double nuclei,
suggesting that the star-formation rate in the tails peaks prior to the actual
coalescence of the galaxy nuclei and diminishes quickly thereafter. Similar to
results at other wavelengths, the observed star formation at U' can only
account for a small fraction of the known bolometric luminosity of the ULIGs.
Azimuthally averaged radial light profiles at U' are characterized by a sersic
law with index n=2, which is intermediate between an exponential disk and an
r^(-1/4) law and closely resembles the latter at large radii. The implications
of this near-ultraviolet imaging for optical/near-infrared observations of high
redshift counterparts of ULIGs are discussed.Comment: 30 pages, 4 tables, and 9 figures, 2 of which are JPEGs. To appear in
the August, 2000 edition of the Astronomical Journa