907 research outputs found

    Self-relevant disgust and self-harm urges in patients with borderline personality disorder and depression: a pilot study with a newly designed psychological challenge.

    Get PDF
    BACKGROUND: Borderline personality disorder (BPD) is a common psychiatric condition associated with self-harm. Self-harm is poorly understood and there is currently no treatment for acute presentations with self-harm urges. OBJECTIVES: By using a new task (Self-relevant Task; SRT), to explore emotions related to one's own person (PERSON task) and body (BODY task), to study the correlations of these emotions, specifically disgust, with self-harm urge level changes, and to test the task's potential to be developed into an experimental model of self-harming for treatment trials. METHODS: 17 BPD patients, 27 major depressive disorder (MDD) patients, and 25 healthy volunteers performed the SRT. Emotion labels were extracted from task narratives and disgust and self-harm urge level changes measured by visual analogue scales. We used validated rating scales to measure symptom severity. RESULTS: The SRT was effective at inducing negative emotions and self-harm urge changes. Self-harm urge changes correlated with borderline symptom severity. Post-task disgust levels on the visual analogue scales were higher in BPD patients than in healthy controls in the PERSON task, and higher than in both control groups in the BODY task. Changes in disgust levels during the task were significantly greater in the patient groups. Post-task disgust levels or changes in disgust were not associated with self-harm urge changes (except the latter in MDD in the PERSON task), but self-harm urge changes and disgust (but no other emotion) narrative labels were on a whole sample level. CONCLUSION: Although associations with the analogue scale measures were not significant, self-disgust reported in the narrative of patients may be associated with a higher probability of self-harm urges. Further research with larger sample sizes is needed to confirm this relationship and to examine whether reducing self-disgust could reduce self-harm urges. The SRT was effective and safe, and could be standardized for experimental studies.This work was partly funded by a Core Award from the Medical Research Council and the Wellcome Trust to the Behavioural and Clinical Neuroscience Institute (MRC Ref G1000183; WT Ref 093875/Z/10/Z). Sawsan Abdul-Hamid received a grant from the Evelyn Trust to help to cover the costs of her research placement with the research group. The Talisman Trust also supported the study with a grant.This is the final published version, which can also be found on the PLoS website here: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0099696#ac

    Serum Proteins Enhance Dispersion Stability and Influence the Cytotoxicity and Dosimetry of ZnO Nanoparticles in Suspension and Adherent Cancer Cell Models

    Get PDF
    Agglomeration and sedimentation of nanoparticles (NPs) within biological solutions is a major limitation in their use in many downstream applications. It has been proposed that serum proteins associate with the NP surface to form a protein corona that limits agglomeration and sedimentation. Here, we investigate the effect of fetal bovine serum (FBS) proteins on the dispersion stability, dosimetry, and NP-induced cytotoxicity of cationic zinc oxide nanoparticles (nZnO) synthesized via forced hydrolysis with a core size of 10 nm. Two different in vitro cell culture models, suspension and adherent, were evaluated by comparing a phosphate buffered saline (PBS) nZnO dispersion (nZnO/PBS) and an FBS-stabilized PBS nZnO dispersion (nZnO – FBS/PBS). Surface interactions of FBS on nZnO were analyzed via spectroscopic and optical techniques. Fourier transformed infrared spectroscopy (FTIR) confirmed the adsorption of negatively charged protein components on the cationic nZnO surface through the disappearance of surfaced-adsorbed carboxyl functional groups and the subsequent detection of vibrational modes associated with the protein backbone of FBS-associated proteins. Further confirmation of these interactions was noted in the isoelectric point shift of the nZnO from the characteristic pH of 9.5 to a pH of 6.1.In nZnO – FBS/PBS dispersions, the FBS reduced agglomeration and sedimentation behaviors to impart long-term improvements (\u3e24 h) to the nZnO dispersion stability. Furthermore, mathematical dosimetry models indicate that nZnO – FBS/PBS dispersions had consistent NP deposition patterns over time unlike unstable nZnO/PBS dispersions. In suspension cell models, the stable nZnO – FBS/PBS dispersion resulted in a ~33 % increase in the NP-induced cytotoxicity for both Jurkat leukemic and Hut-78 lymphoma cancer cells. In contrast, the nZnO – FBS/PBS dispersion resulted in 49 and 71 % reductions in the cytotoxicity observed towards the adherent breast (T-47D) and prostate (LNCaP) cancer cell lines, respectively. Presence of FBS in the NP dispersions also increased the reactive oxygen species generation. These observations indicate that the improved dispersion stability leads to increased NP bioavailability for suspension cell models and reduced NP sedimentation onto adherent cell layers resulting in more accurate in vitro toxicity assessments

    Defect Induced Ferromagnetism in Undoped ZnO Nanoparticles

    Get PDF
    Undoped ZnO nanoparticles (NPs) with size ∼12 nm were produced using forced hydrolysis methods using diethylene glycol (DEG) [called ZnO-I] or denatured ethanol [called ZnO-II] as the reaction solvent; both using Zn acetate dehydrate as precursor. Both samples showed weak ferromagnetic behavior at 300 K with saturation magnetization Ms = 0.077 ± 0.002 memu/g and 0.088 ± 0.013 memu/g for ZnO-I and ZnO-II samples, respectively. Fourier transform infrared(FTIR) spectra showed that ZnO-I nanocrystals had DEG fragments linked to their surface. Photoluminescence (PL) data showed a broad emission near 500 nm for ZnO-II which is absent in the ZnO-I samples, presumably due to the blocking of surface traps by the capping molecules. Intentional oxygen vacancies created in the ZnO-I NPs by annealing at 450 °C in flowing Ar gas gradually increased Ms up to 90 min and x-ray photoelectron spectra (XPS) suggested that oxygen vacancies may have a key role in the observed changes in Ms. Finally, PL spectra of ZnO showed the appearance of a blue/violet emission, attributed to Zn interstitials,whose intensity changes with annealing time, similar to the trend seen for Ms. The observed variation in the magnetization of ZnO NP with increasing Ar annealing time seems to depend on the changes in the number of Zn interstitials and oxygen vacancies

    Synthesizing Skyrmion Molecules in Fe-Gd Thin Films

    Get PDF
    We show that properly engineered amorphous Fe-Gd alloy thin films with perpendicular magnetic anisotropy exhibit room-temperature skyrmion molecules, or a pair of like-polarity, opposite-helicity skyrmions. Magnetic mirror symmetry planes present in the stripe phase, instead of chiral exchange, determine the internal skyrmion structure and the net achirality of the skyrmion phase. Our study shows that stripe domain engineering in amorphous alloy thin films may enable the creation of skyrmion phases with technologically desirable properties.Comment: 15 pages, 6 figures. Accepted for publication in Applied Physics Letter

    What Developers Want and Need from Program Analysis: An Empirical Study

    Get PDF
    Program Analysis has been a rich and fruitful field of research for many decades, and countless high quality program analysis tools have been produced by academia. Though there are some well-known examples of tools that have found their way into routine use by practitioners, a common challenge faced by researchers is knowing how to achieve broad and lasting adoption of their tools. In an effort to understand what makes a program analyzer most attractive to developers, we mounted a multi-method investigation at Microsoft. Through interviews and surveys of developers as well as analysis of defect data, we provide insight and answers to four high level research questions that can help researchers design program analyzers meeting the needs of software developers. First, we explore what barriers hinder the adoption of program analyzers, like poorly expressed warning messages. Second, we shed light on what functionality developers want from analyzers, including the types of code issues that developers care about. Next, we answer what non-functional characteristics an analyzer should have to be widely used, how the analyzer should fit into the development process, and how its results should be reported. Finally, we investigate defects in one of Microsoft's flagship software services, to understand what types of code issues are most important to minimize, potentially through program analysis

    Detecting control flow in Smarphones: Combining static and dynamic analyses

    No full text
    International audienceSecurity in embedded systems such as smartphones requires protection of confidential data and applications. Many of security mechanisms use dynamic taint analysis techniques for tracking information flow in software. But these techniques cannot detect control flows that use conditionals to implicitly transfer information from objects to other objects. In particular, malicious applications can bypass Android system and get privacy sensitive information through control flows. We propose an enhancement of dynamic taint analysis that propagates taint along control dependencies by using the static analysis in embedded system such as Google Android operating system. By using this new approach, it becomes possible to protect sensitive information and detect most types of software exploits without reporting too many false positives

    Ready ... Go: Amplitude of the fMRI Signal Encodes Expectation of Cue Arrival Time

    Get PDF
    What happens when the brain awaits a signal of uncertain arrival time, as when a sprinter waits for the starting pistol? And what happens just after the starting pistol fires? Using functional magnetic resonance imaging (fMRI), we have discovered a novel correlate of temporal expectations in several brain regions, most prominently in the supplementary motor area (SMA). Contrary to expectations, we found little fMRI activity during the waiting period; however, a large signal appears after the “go” signal, the amplitude of which reflects learned expectations about the distribution of possible waiting times. Specifically, the amplitude of the fMRI signal appears to encode a cumulative conditional probability, also known as the cumulative hazard function. The fMRI signal loses its dependence on waiting time in a “countdown” condition in which the arrival time of the go cue is known in advance, suggesting that the signal encodes temporal probabilities rather than simply elapsed time. The dependence of the signal on temporal expectation is present in “no-go” conditions, demonstrating that the effect is not a consequence of motor output. Finally, the encoding is not dependent on modality, operating in the same manner with auditory or visual signals. This finding extends our understanding of the relationship between temporal expectancy and measurable neural signals

    Profiling allele-specific gene expression in brains from individuals with autism spectrum disorder reveals preferential minor allele usage.

    Get PDF
    One fundamental but understudied mechanism of gene regulation in disease is allele-specific expression (ASE), the preferential expression of one allele. We leveraged RNA-sequencing data from human brain to assess ASE in autism spectrum disorder (ASD). When ASE is observed in ASD, the allele with lower population frequency (minor allele) is preferentially more highly expressed than the major allele, opposite to the canonical pattern. Importantly, genes showing ASE in ASD are enriched in those downregulated in ASD postmortem brains and in genes harboring de novo mutations in ASD. Two regions, 14q32 and 15q11, containing all known orphan C/D box small nucleolar RNAs (snoRNAs), are particularly enriched in shifts to higher minor allele expression. We demonstrate that this allele shifting enhances snoRNA-targeted splicing changes in ASD-related target genes in idiopathic ASD and 15q11-q13 duplication syndrome. Together, these results implicate allelic imbalance and dysregulation of orphan C/D box snoRNAs in ASD pathogenesis

    Clastic Sediments in the Butler Cave – Sinking Creek System, Virginia, USA

    Get PDF
    The Butler Cave - Sinking Creek System in Bath County, Virginia, consists of a master trunk passage along the axis of a syncline with a trellis arrangement of dip-oriented side caves. The western set of dip passages contain a sequence of massively and chaotically bedded sand and cobble sediments. Massive cobble fills also occur in the strike-oriented trunk passage. Cave passages on the eastern side of the syncline contain mostly sand and silt. The light fraction of the sediments consists predominantly of quartz and rock fragments. The sediments contain several percent heavy minerals composed of iron oxides, zircon, rutile, tourmaline and other minerals. Measurement of the visible and near infrared diffuse reflectance spectra shows at least three populations of sediments to be present: an iron-rich, clay-poor group; a clay-rich group; and a gypsiferous sediment. The iron minerals provided a paleomagnetic signal. Sediments from the trunk passage, deposited by recent underground drainage, contained a normal pole direction. Sediments from the dip passages were paleomagnetically reversed, showing the deposition dates from prior to 780,000 years. In one instance reversed polarity deposits overlie normal polarity, implying a minimum age of 990,000 years for the reversed sediments.   

    Development of parent- and teacher-reported emotional and behavioural problems in young people with intellectual disabilities: Does level of ID matter?

    Get PDF
    This study described similarities and differences in the 5-year stability and change of problem behaviour between youths attending schools for children with mild to borderline (MiID) versus moderate intellectual disabilities (MoID). A two-wave multiple-birth-cohort sample of 6 to 18-year-old was assessed twice across a 5-year interval using the Developmental Behaviour Checklist Primary Carer version (n = 718) and Teacher version (n = 313). For most types of problem behaviour youths with MiID and MoID showed similar levels of stability of individual differences, persistence and onset of psychopathology. Whenever differences were found, youths with MoID showed the highest level of stability, persistence and onset across informants. Mean levels of parent-reported, but not teacher-reported, problem behaviour, regardless of level of intellectual disability, decreased during the 5-year follow-up period. Youths with MoID and MiID are at risk for persistent psychopathology to a similar degree. Different informants showed to have a different evaluation of the level and the amount of change of problem behaviour, and should be considered complementary in the diagnostic process. © 2007 BILD Publications
    corecore