191 research outputs found

    Dry impregnation in fluidized bed: Drying and calcination effect on nanoparticles dispersion and location in a porous support

    Get PDF
    The synthesis of metal nanoparticles dispersed inside the grains of a porous inorganic support was carried out by ‘‘dry impregnation’’ in a fluidized bed. The principle of this technique consists in the spraying of a solution containing a metal source into a hot fluidized bed of porous particles. The metal source can be of different nature such as metal salts, organometallic precursors or colloidal solutions. The experimental results obtained from iron oxide deposition on a porous silica gel as support, constitute the core of this article but others results concerning the deposition of rhodium from a colloidal suspension containing preformed rhodium nanoparticles are also described. More precisely, this study aims to understand the effect of the bed temperature during the impregnation step, the initial particle porosity and the calcination operating protocol on the metallic nanoparticles dispersion and location in the silica porous particles. The so-obtained products were characterized by various techniques in order to determine their morphology, their surface properties and the dispersion of the nanoparticles inside the support. The results showed that, under the chosen operating conditions, the deposit efficiency is close to 100% and the competition between the drying rate, depending on the process-related variables, and the capillary penetration rate, depending on the physicochemical-related variables, controls the deposit location. A quasi uniform deposit inside the support particles is observed for soft drying. The metal nanoparticles size is controlled by the pore mean diameter of the support as well as the calcination operating protocol

    Magnetic anisotropy determination and magnetic hyperthermia properties of small Fe nanoparticles in the superparamagnetic regime

    Get PDF
    We report on the magnetic and hyperthermia properties of iron nanoparticles synthesized by organometallic chemistry. They are 5.5 nm in diameter and display a saturation magnetization close to the bulk one. Magnetic properties are dominated by the contribution of aggregates of nanoparticles with respect to individual isolated nanoparticles. Alternative susceptibility measurements are been performed on a low interacting system obtained after eliminating the aggregates by centrifugation. A quantitative analysis using the Gittleman s model allow a determination of the effective anisotropy Keff = 1.3 * 10^5 J.m^{-3}, more than two times the magnetocristalline value of bulk iron. Hyperthermia measurements are performed on agglomerates of nanoparticles at a magnetic field up to 66 mT and at frequencies in the range 5-300 kHz. Maximum measured SAR is 280 W/g at 300 kHz and 66 mT. Specific absorption rate (SAR) displays a square dependence with the magnetic field below 30 mT but deviates from this power law at higher value. SAR is linear with the applied frequency for mu_0H=19 mT. The deviations from the linear response theory are discussed. A refined estimation of the optimal size of iron nanoparticles for hyperthermia applications is provided using the determined effective anisotropy value

    Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: Evidences for Stoner-Wohlfarth behaviour and large losses

    Full text link
    We report on hyperthermia measurements on a colloidal solution of 15 nm monodisperse FeCo nanoparticles (NPs). Losses as a function of the magnetic field display a sharp increase followed by a plateau, which is what is expected for losses of ferromagnetic single-domain NPs. The frequency dependence of the coercive field is deduced from hyperthermia measurement and is in quantitative agreement with a simple model of non-interacting NPs. The measured losses (1.5 mJ/g) compare to the highest of the literature, though the saturation magnetization of the NPs is well below the bulk one.Comment: 14 pages, 3 figure

    Uniform Ru nanoparticles on N-doped graphene for selective hydrogenation of fatty acids to alcohols

    Full text link
    [EN] Ruthenium nanoparticles (Ru NPs) supported on reduced-graphene oxide doped with N (NH2-rGO) was synthesized and used for the selective hydrogenation of fatty acids to alcohols, being the hydrogenation of palmitic acid selected as model. Ru was stabilized forming uniform nanometer size particles on N-doped graphene (Ru/NH2-rGO). The resultant catalyst was very selective for the carbonyl reduction giving 93% of the aliphatic alcohol at 99% conversion. The Ru/NH2-rGO catalysts was more active and selective than the corresponding Ru on non-doped graphene (Ru/rGO) or Ru on carbon (Ru/C). Mechanistic studies points to a dual mechanism for H-2 dissociation, i.e. homolytic and heterolytic cleavage exists on the Ru/NH2-rGO, while only the homolytic H-2 dissociation occurs on Ru/rGO. This heterolytic splitting, which activates the carbonyl groups and facilitates the hydrogenation of aliphatic acids, is due to the presence of basic centres next to the Ru atoms. The presence of N atoms also increases the stability of the catalyst, allowing a reuse up to four times. (C) 2019 Elsevier Inc. All rights reserved.The authors thank Institute de Tecnologia Quimica (ITQ), Consejo Superior de Investigaciones Cientificas (CSIC) and Universitat Politecnica de Valencia (UPV) for the facilities and Severo Ochoa excellence programme, "Juan de la Cierva" programme and Primeros Proyectos de Investigacion (PAID-06-18) for financial support. We gratefully acknowledge Prof. A. Corma for his invaluable contribution to this research. We also thank the Electron Microscopy Service of the UPV for TEM facilities, Jose A. Vidal-Moya (ITQ CSIC-UPV) for NMR measurements and J. Gaona and C. Morales for their assistance in catalytic reactions.Martínez-Prieto, LM.; Puche Panadero, M.; Cerezo-Navarrete, C.; Chaudret, B. (2019). Uniform Ru nanoparticles on N-doped graphene for selective hydrogenation of fatty acids to alcohols. Journal of Catalysis. 377:429-437. https://doi.org/10.1016/j.jcat.2019.07.040S42943737

    Про водогосподарський комплекс Криму

    Get PDF
    В статье дается определение понятия "водохозяйственный комплекс региона". Приводятся количественные и качественные характеристики состояния развития этой отрасли в АРК. Делаются выводы и предложения относительно повышения эффективности функционирования отрасли, улучшению качества предоставляемых услуг.У статті дається визначення поняття "водогосподарський комплекс регіону". Приводяться кількісні і якісні характеристики стану розвитку цієї галузі в АРК. Робляться висновки й пропозиції щодо підвищення ефективності функціонування галузі, поліпшенню якості надаваних послуг.There is given the definition of concept "a water complex of the region" in this article. Quantitative are resulted and qualitative behaviors of a condition of development of this area in АRК. The conclusions and proposals concerning increase of efficiency of operation of area, improvement of the quality of rendered services are done

    Tuning complex shapes in Pt(0) nanoparticles : from cubic dendrites to five-fold stars

    Get PDF
    A platinum star performance: Quasi-single-crystalline Pt nanoparticles with peculiar morphologies—cubic dendrites, planar tripods, and fivefold stars—were synthesized in high yield. Shape selectivity was achieved by finely tuning the growth kinetics under a dihydrogen atmosphere

    Chemical Ordering in Bimetallic FeCo Nanoparticles: From a Direct Chemical Synthesis to Application As Efficient High-Frequency Magnetic Material

    Get PDF
    Single-crystalline FeCo nanoparticles with tunable size and shape were prepared by co-decomposing two metal-amide precursors under mild conditions. The nature of the ligands introduced in this organometallic synthesis drastically affects the reactivity of the precursors and, thus, the chemical distribution within the nanoparticles. The presence of the B2 short-range order was evidenced in FeCo nanoparticles prepared in the presence of HDAHCl ligands, combining 57 Fe Mössbauer, zero-field 59 Co ferromagnetic nuclear resonance (FNR), and X-ray diffraction studies. This is the first time that the B2 structure is directly formed during synthesis without the need of any annealing step. The as-prepared nanoparticles exhibit magnetic properties comparable with the ones for the bulk (M s = 226 Am 2 ·kg -1 ). Composite magnetic materials prepared from these FeCo nanoparticles led to a successful proof-of-concept of the integration on inductor-based filters (27% enhancement of the inductance value at 100 MHz)

    Large specific absorption rates in the magnetic hyperthermia properties of metallic iron nanocubes

    Get PDF
    We report on the magnetic hyperthermia properties of chemically synthesized ferromagnetic 11 and 16 nm Fe(0) nanoparticles of cubic shape displaying the saturation magnetization of bulk iron. The specific absorption rate measured on 16 nm nanocubes is 1690+-160 W/g at 300 kHz and 66 mT. This corresponds to specific losses-per-cycle of 5.6 mJ/g, largely exceeding the ones reported in other systems. A way to quantify the degree of optimization of any system with respect to hyperthermia applications is proposed. Applied here, this method shows that our nanoparticles are not fully optimized, probably due to the strong influence of magnetic interactions on their magnetic response. Once protected from oxidation and further optimized, such nano-objects could constitute efficient magnetic cores for biomedical applications requiring very large heating power
    corecore