879 research outputs found
Spatial clustering of mental disorders and associated characteristics of the neighbourhood context in Malmö, Sweden, in 2001
Study objective: Previous research provides preliminary evidence of spatial variations of mental disorders and associations between neighbourhood social context and mental health. This study expands past literature by (1) using spatial techniques, rather than multilevel models, to compare the spatial distributions of two groups of mental disorders (that is, disorders due to psychoactive substance use, and neurotic, stress related, and somatoform disorders); and (2) investigating the independent impact of contextual deprivation and neighbourhood social disorganisation on mental health, while assessing both the magnitude and the spatial scale of these effects.
Design: Using different spatial techniques, the study investigated mental disorders due to psychoactive substance use, and neurotic disorders.
Participants: All 89 285 persons aged 40–69 years residing in Malmö, Sweden, in 2001, geolocated to their place of residence.
Main results: The spatial scan statistic identified a large cluster of increased prevalence in a similar location for the two mental disorders in the northern part of Malmö. However, hierarchical geostatistical models showed that the two groups of disorders exhibited a different spatial distribution, in terms of both magnitude and spatial scale. Mental disorders due to substance consumption showed larger neighbourhood variations, and varied in space on a larger scale, than neurotic disorders. After adjustment for individual factors, the risk of substance related disorders increased with neighbourhood deprivation and neighbourhood social disorganisation. The risk of neurotic disorders only increased with contextual deprivation. Measuring contextual factors across continuous space, it was found that these associations operated on a local scale.
Conclusions: Taking space into account in the analyses permitted deeper insight into the contextual determinants of mental disorders
Self-consistent solution for the polarized vacuum in a no-photon QED model
We study the Bogoliubov-Dirac-Fock model introduced by Chaix and Iracane
({\it J. Phys. B.}, 22, 3791--3814, 1989) which is a mean-field theory deduced
from no-photon QED. The associated functional is bounded from below. In the
presence of an external field, a minimizer, if it exists, is interpreted as the
polarized vacuum and it solves a self-consistent equation.
In a recent paper math-ph/0403005, we proved the convergence of the iterative
fixed-point scheme naturally associated with this equation to a global
minimizer of the BDF functional, under some restrictive conditions on the
external potential, the ultraviolet cut-off and the bare fine
structure constant . In the present work, we improve this result by
showing the existence of the minimizer by a variational method, for any cut-off
and without any constraint on the external field.
We also study the behaviour of the minimizer as goes to infinity
and show that the theory is "nullified" in that limit, as predicted first by
Landau: the vacuum totally kills the external potential. Therefore the limit
case of an infinite cut-off makes no sense both from a physical and
mathematical point of view.
Finally, we perform a charge and density renormalization scheme applying
simultaneously to all orders of the fine structure constant , on a
simplified model where the exchange term is neglected.Comment: Final version, to appear in J. Phys. A: Math. Ge
Directly characterizing the relative strength and momentum dependence of electron-phonon coupling using resonant inelastic x-ray scattering
The coupling between lattice and charge degrees of freedom in condensed
matter materials is ubiquitous and can often result in interesting properties
and ordered phases, including conventional superconductivity, charge density
wave order, and metal-insulator transitions. Angle-resolved photoemission
spectroscopy and both neutron and non-resonant x-ray scattering serve as
effective probes for determining the behavior of appropriate, individual
degrees of freedom -- the electronic structure and lattice excitation, or
phonon dispersion, respectively. However, each provides less direct information
about the mutual coupling between the degrees of freedom, usual through
self-energy effects, which tend to renormalize and broaden spectral features
precisely where the coupling is strong, impacting ones ability to quantitively
characterize the coupling. Here we demonstrate that resonant inelastic x-ray
scattering, or RIXS, can be an effective tool to directly determine the
relative strength and momentum dependence of the electron-phonon coupling in
condensed matter systems. Using a diagrammatic approach for an 8-band model of
copper oxides, we study the contributions from the lowest order diagrams to the
full RIXS intensity for a realistic scattering geometry, accounting for matrix
element effects in the scattering cross-section as well as the momentum
dependence of the electron-phonon coupling vertex. A detailed examination of
these maps offers a unique perspective into the characteristics of
electron-phonon coupling, which complements both neutron and non-resonant x-ray
scattering, as well as Raman and infrared conductivity.Comment: 10 pages, 10 figure
Phonons in the multiferroic langasite BaNbFeSiO : evidences for symmetry breaking
The chiral langasite BaNbFeSiO is a multiferroic
compound. While its magnetic order below T=27 K is now well characterised,
its polar order is still controversial. We thus looked at the phonon spectrum
and its temperature dependence to unravel possible crystal symmetry breaking.
We combined optical measurements (both infrared and Raman spectroscopy) with ab
initio calculations and show that signatures of a polar state are clearly
present in the phonon spectrum even at room temperature. An additional symmetry
lowering occurs below 120~K as seen from emergence of softer phonon modes in
the THz range. These results confirm the multiferroic nature of this langasite
and open new routes to understand the origin of the polar state
Lattice and spin excitations in multiferroic h-YMnO3
We used Raman and terahertz spectroscopies to investigate lattice and
magnetic excitations and their cross-coupling in the hexagonal YMnO3
multiferroic. Two phonon modes are strongly affected by the magnetic order.
Magnon excitations have been identified thanks to comparison with neutron
measurements and spin wave calculations but no electromagnon has been observed.
In addition, we evidenced two additional Raman active peaks. We have compared
this observation with the anti-crossing between magnon and acoustic phonon
branches measured by neutron. These optical measurements underly the unusual
strong spin-phonon coupling
Existence of global-in-time solutions to a generalized Dirac-Fock type evolution equation
We consider a generalized Dirac-Fock type evolution equation deduced from
no-photon Quantum Electrodynamics, which describes the self-consistent
time-evolution of relativistic electrons, the observable ones as well as those
filling up the Dirac sea. This equation has been originally introduced by Dirac
in 1934 in a simplified form. Since we work in a Hartree-Fock type
approximation, the elements describing the physical state of the electrons are
infinite rank projectors. Using the Bogoliubov-Dirac-Fock formalism, introduced
by Chaix-Iracane ({\it J. Phys. B.}, 22, 3791--3814, 1989), and recently
established by Hainzl-Lewin-Sere, we prove the existence of global-in-time
solutions of the considered evolution equation.Comment: 12 pages; more explanations added, some final (minor) corrections
include
Three dimensional collective charge excitations in electron-doped cuprate superconductors
High temperature cuprate superconductors consist of stacked CuO2 planes, with
primarily two dimensional electronic band structures and magnetic excitations,
while superconducting coherence is three dimensional. This dichotomy highlights
the importance of out-of-plane charge dynamics, believed to be incoherent in
the normal state, yet lacking a comprehensive characterization in
energy-momentum space. Here, we use resonant inelastic x-ray scattering (RIXS)
with polarization analysis to uncover the pure charge character of a recently
discovered collective mode in electron-doped cuprates. This mode disperses
along both the in- and, importantly, out-of-plane directions, revealing its
three dimensional nature. The periodicity of the out-of-plane dispersion
corresponds to the CuO2 plane distance rather than the crystallographic c-axis
lattice constant, suggesting that the interplane Coulomb interaction drives the
coherent out-of-plane charge dynamics. The observed properties are hallmarks of
the long-sought acoustic plasmon, predicted for layered systems and argued to
play a substantial role in mediating high temperature superconductivity.Comment: This is the version of first submission. The revised manuscript
according to peer reviews is now accepted by Nature and will be published
online on 31st Oct., 201
Dispersive charge density wave excitations and temperature dependent commensuration in Bi2Sr2CaCu2O8+{\delta}
Experimental evidence on high-Tc cuprates reveals ubiquitous charge density
wave (CDW) modulations, which coexist with superconductivity. Although the CDW
had been predicted by theory, important questions remain about the extent to
which the CDW influences lattice and charge degrees of freedom and its
characteristics as functions of doping and temperature. These questions are
intimately connected to the origin of the CDW and its relation to the
mysterious cuprate pseudogap. Here, we use ultrahigh resolution resonant
inelastic x-ray scattering (RIXS) to reveal new CDW character in underdoped
Bi2Sr2CaCu2O8+{\delta} (Bi2212). At low temperature, we observe dispersive
excitations from an incommensurate CDW that induces anomalously enhanced phonon
intensity, unseen using other techniques. Near the pseudogap temperature T*,
the CDW persists, but the associated excitations significantly weaken and the
CDW wavevector shifts, becoming nearly commensurate with a periodicity of four
lattice constants. The dispersive CDW excitations, phonon anomaly, and
temperature dependent commensuration provide a comprehensive momentum space
picture of complex CDW behavior and point to a closer relationship with the
pseudogap state
The human OPA1delTTAG mutation induces premature age-related systemic neurodegeneration in mouse
Dominant optic atrophy is a rare inherited optic nerve degeneration caused by mutations in the mitochondrial fusion gene OPA1. Recently, the clinical spectrum of dominant optic atrophy has been extended to frequent syndromic forms, exhibiting various degrees of neurological and muscle impairments frequently found in mitochondrial diseases. Although characterized by a specific loss of retinal ganglion cells, the pathophysiology of dominant optic atrophy is still poorly understood. We generated an Opa1 mouse model carrying the recurrent Opa1(delTTAG) mutation, which is found in 30% of all patients with dominant optic atrophy. We show that this mouse displays a multi-systemic poly-degenerative phenotype, with a presentation associating signs of visual failure, deafness, encephalomyopathy, peripheral neuropathy, ataxia and cardiomyopathy. Moreover, we found premature age-related axonal and myelin degenerations, increased autophagy and mitophagy and mitochondrial supercomplex instability preceding degeneration and cell death. Thus, these results support the concept that Opa1 protects against neuronal degeneration and opens new perspectives for the exploration and the treatment of mitochondrial diseases
Neighborhood environments, mobility, and health: Towards a new generation of studies in environmental health research
- …
