13 research outputs found

    Additive enhancement of apoptosis by TRAIL and fenretinide in metastatic breast cancer cells in vitro

    No full text
    Successful management of metastatic breast cancer still needs better chemotherapeutic approaches. The combination of fenretinide (4-HPR), a synthetic retinoid inducing apoptosis by ROS generation, and TRAIL, a cell death ligand inducing caspase-dependent apoptosis, might result in more powerful cytotoxic activity. We therefore investigated the cytotoxic activity and resulting cell death mode of this combination in MDA-MB-231 cell line as a representative of metastatic state. Cytotoxicity was assessed by the ATP viability assay while the mode of cell death was determined both morphologically using fluorescence microscopy and biochemically using Western blotting and ELISA. The combination resulted in an additive cytotoxic effect at the doses used. Fragmented and/ or pyknotic nuclei, which is a feature of apoptosis, were observed after treatment with fenretinide or TRAIL. However, the combinatorial treatment further increased apoptotic figures. Confirming apoptosis, active caspase-3 and cleaved PARP were increased by fenretinide or TRAIL in both western blotting and ELISA. Again, apoptosis was further increased by the combination. The combination warrants further studies due to its superior cytotoxic activity in the metastatic setting of breast cancer. (C) 2014 Elsevier Masson SAS. All rights reserved

    A promising natural product, pristimerin, results in cytotoxicity against breast cancer stem cells in vitro and xenografts in vivo through apoptosis and an incomplete autopaghy in breast cancer

    No full text
    Several natural products have been suggested as effective agents for the treatment of cancer. Given the important role of CSCs (Cancer Stem Cells) in cancer, which is a trendy hypothesis, it is worth investigating the effects of pristimerin on CSCs as well as on the other malignant cells (MCF-7 and MDA-MB-231) of breast cancer. The anti-growth activity of pristimerin against MCF-7 and MCF-7s (cancer stem cell enriched population) cells was investigated by real time viability monitorization (xCELLigence System®) and ATP assay, respectively. Mode of cell death was evaluated using electron and fluorescence microscopies, western blotting (autophagy, apoptosis and ER-stress related markers) and flow cytometry (annexin-V staining, caspase 3/7 activity, BCL-2 and PI3K expressions). Pristimerin showed an anti-growth effect on cancer cells and cancer stem cells with IC50 values ranging at 0.38–1.75 μM. It inhibited sphere formation at relatively lower doses (<1.56 μM). Apoptosis was induced in MCF-7 and MCF-7s cells. In addition, extensive cytoplasmic vacuolation was observed, implying an incompleted autophagy as evidenced by the increase of autophagy-related proteins (p62 and LC3-II) with an unfolded protein response (UPR). Pristimerin inhibited the growth of MCF-7 and MDA-MB-231-originated xenografts in NOD.CB17-Prkdcscid/J mice. In mice, apoptosis was further confirmed by cleavage of PARP, activation of caspase 3 and/or 7 and TUNEL staining. Taken together, pristimerin shows cytotoxic activity on breast cancer both in vitro and in vivo. It seems to represent a robust promising agent for the treatment of breast cancer. Pristimerin's itself or synthetic novel derivatives should be taken into consideration for novel potent anticancer agent(s). © 2017 Elsevier Lt

    A promising natural product, pristimerin, results in cytotoxicity against breast cancer stem cells in vitro and xenografts in vivo through apoptosis and an incomplete autopaghy in breast cancer

    No full text
    Several natural products have been suggested as effective agents for the treatment of cancer. Given the important role of CSCs (Cancer Stem Cells) in cancer, which is a trendy hypothesis, it is worth investigating the effects of pristimerin on CSCs as well as on the other malignant cells (MCF-7 and MDA-MB-231) of breast cancer. The anti-growth activity of pristimerin against MCF-7 and MCF-7s (cancer stem cell enriched population) cells was investigated by real time viability monitorization (xCELLigence System®) and ATP assay, respectively. Mode of cell death was evaluated using electron and fluorescence microscopies, western blotting (autophagy, apoptosis and ER-stress related markers) and flow cytometry (annexin-V staining, caspase 3/7 activity, BCL-2 and PI3K expressions). Pristimerin showed an anti-growth effect on cancer cells and cancer stem cells with IC50 values ranging at 0.38-1.75μM. It inhibited sphere formation at relatively lower doses (<1.56μM). Apoptosis was induced in MCF-7 and MCF-7s cells. In addition, extensive cytoplasmic vacuolation was observed, implying an incompleted autophagy as evidenced by the increase of autophagy-related proteins (p62 and LC3-II) with an unfolded protein response (UPR). Pristimerin inhibited the growth of MCF-7 and MDA-MB-231-originated xenografts in NOD.CB17-Prkdcscid/J mice. In mice, apoptosis was further confirmed by cleavage of PARP, activation of caspase 3 and/or 7 and TUNEL staining. Taken together, pristimerin shows cytotoxic activity on breast cancer both in vitro and in vivo. It seems to represent a robust promising agent for the treatment of breast cancer. Pristimerin's itself or synthetic novel derivatives should be taken into consideration for novel potent anticancer agent(s)

    Biological evaluation of both enantiomers of fluoro-thalidomide using human myeloma cell line H929 and others

    Get PDF
    <div><p>Over the last few years, thalidomide has become one of the most important anti-tumour drugs for the treatment of relapsed-refractory multiple myeloma. However, besides its undesirable teratogenic side effect, its configurational instability critically limits any further therapeutic improvements of this drug. In 1999, we developed fluoro-thalidomide which is a bioisostere of thalidomide, but, in sharp contrast to the latter, it is configurationally stable and readily available in both enantiomeric forms. The biological activity of fluoro-thalidomide however, still remains virtually unstudied, with the exception that fluoro-thalidomide is not teratogenic. Herein, we report the first biological evaluation of fluoro-thalidomide in racemic and in both (<i>R</i>)- and (<i>S</i>)-enantiomerically pure forms against (<i>in vitro</i>) H929 cells of multiple myeloma (MM) using an annexin V assay. We demonstrate that all fluoro-thalidomides inhibited the growth of H929 MM cells without any <i>in-vivo</i> activation. Furthermore, we report that the enantiomeric forms of fluoro-thalidomide display different anti-tumour activities, with the (<i>S</i>)-enantiomer being noticeably more potent. The angiogenesis of fluoro-thalidomides is also investigated and compared to thalidomide. The data obtained in this study paves the way towards novel pharmaceutical research on fluoro-thalidomides.</p></div
    corecore