4,562 research outputs found

    Primary crustal melt compositions: Insights into the controls, mechanisms and timing of generation from kinetics experiments and melt inclusions

    Get PDF
    We explore the controls, mechanisms and timing of generation of primary melts and their compositions, and show that the novel studies of melt inclusions in migmatites can provide important insights into the processes of crustal anatexis of a particular rock. Partial melting in the source region of granites is dependent on five main processes: (i) supply of heat; (ii) mineral–melt interface reactions associated with the detachment and supply of mineral components to the melt, (iii) diffusion in the melt, (iv) diffusion in minerals, and (v) recrystallization of minerals. As the kinetics of these several processes vary over several orders of magnitude, it is essential to evaluate in Nature which of these processes control the rate of melting, the composition of melts, and the extent to which residue–melt chemical equilibrium is attained under different circumstances. To shed light on these issues, we combine data from experimental and melt inclusion studies. First, data from an extensive experimental program on the kinetics of melting of crustal protoliths and diffusion in granite melt are used to set up the necessary framework that describes how primary melt compositions are established during crustal anatexis. Then, we use this reference frame and compare compositional trends from experiments with the composition of melt inclusions analyzed in particular migmatites. We show that, for the case of El Hoyazo anatectic enclaves in lavas, the composition of glassy melt inclusions provides important information on the nature and mechanisms of anatexis during the prograde suprasolidus history of these rocks, including melting temperatures and reactions, and extent of melt interconnection, melt homogenization and melt–residue equilibrium. Compositional trends in several of the rehomogenized melt inclusions in garnet from migmatites/granulites in anatectic terranes are consistent with diffusion in melt-controlled melting, though trace element compositions of melt inclusions and coexisting minerals are necessary to provide further clues on the nature of anatexis in these particular rocks.This work was supported by the National Science Foundation [grants EAR-9603199, EAR-9618867, EAR-9625517 and EAR-9404658], the Italian Consiglio Nazionale delle Ricerche, the European Commission (grant 01-LECEMA22F through contract No. ERAS-CT-2003-980409; and a H2020 Marie Skłodowska-Curie Actions under grant agreement No. 654606), the Italian Ministry of Education, University and Research (grants PRIN 2007278A22, 2010TT22SC and SIR RBSI14Y7PF), the Università degli Studi di Padova [Progetto di Ateneo CPDA107188/10 and a Piscopia—Marie Curie Fellowship under grant agreement No. 600376], the Australian Research Council (Australian Professorial Fellowship and Discovery Grants Nos. DP0342473 and DP0556700), and the National Research Foundation (South Africa; Incentives For Rated Researchers Program)

    High-threshold mechanosensitive ion channels blocked by a novel conopeptide mediate pressure-evoked pain

    Get PDF
    Little is known about the molecular basis of somatosensory mechanotransduction in mammals. We screened a library of peptide toxins for effects on mechanically activated currents in cultured dorsal root ganglion neurons. One conopeptide analogue, termed NMB-1 for noxious mechanosensation blocker 1, selectively inhibits (IC50 1 µM) sustained mechanically activated currents in a subset of sensory neurons. Biotinylated NMB-1 retains activity and binds selectively to peripherin-positive nociceptive sensory neurons. The selectivity of NMB-1 was confirmed by the fact that it has no inhibitory effects on voltage-gated sodium and calcium channels, or ligand-gated channels such as acid-sensing ion channels or TRPA1 channels. Conversely, the tarantula toxin, GsMTx-4, which inhibits stretch-activated ion channels, had no effects on mechanically activated currents in sensory neurons. In behavioral assays, NMB-1 inhibits responses only to high intensity, painful mechanical stimulation and has no effects on low intensity mechanical stimulation or thermosensation. Unexpectedly, NMB-1 was found to also be an inhibitor of rapid FM1-43 loading (a measure of mechanotransduction) in cochlear hair cells. These data demonstrate that pharmacologically distinct channels respond to distinct types of mechanical stimuli and suggest that mechanically activated sustained currents underlie noxious mechanosensation. NMB-1 thus provides a novel diagnostic tool for the molecular definition of channels involved in hearing and pressure-evoked pain

    On a microcanonical relation between continuous and discrete spin models

    Full text link
    A relation between a class of stationary points of the energy landscape of continuous spin models on a lattice and the configurations of a Ising model defined on the same lattice suggests an approximate expression for the microcanonical density of states. Based on this approximation we conjecture that if a O(n) model with ferromagnetic interactions on a lattice has a phase transition, its critical energy density is equal to that of the n = 1 case, i.e., a system of Ising spins with the same interactions. The conjecture holds true in the case of long-range interactions. For nearest-neighbor interactions, numerical results are consistent with the conjecture for n=2 and n=3 in three dimensions. For n=2 in two dimensions (XY model) the conjecture yields a prediction for the critical energy of the Berezinskij-Kosterlitz-Thouless transition, which would be equal to that of the two-dimensional Ising model. We discuss available numerical data in this respect.Comment: 5 pages, no figure

    Right Heart Remodeling in Patients with End-Stage Alcoholic Liver Cirrhosis: Speckle Tracking Point of View

    Get PDF
    BACKGROUND: Data regarding cardiac remodeling in patients with alcoholic liver cirrhosis are scarce. We sought to investigate right atrial (RA) and right ventricular (RV) structure, function, and mechanics in patients with alcoholic liver cirrhosis. METHODS: This retrospective cross-sectional investigation included 67 end-stage cirrhotic patients, who were referred for evaluation for liver transplantation and 36 healthy controls. All participants underwent echocardiographic examination including strain analysis, which was performed offline. RESULTS: RV basal diameter and RV thickness were significantly higher in patients with cirrhosis. Conventional parameters of the RV systolic function were similar between the observed groups. Global, endocardial, and epicardial RV longitudinal strains were significantly lower in patients with cirrhosis. Active RA function was significantly higher in cirrhotic patients than in controls. The RA reservoir and conduit strains were significantly lower in cirrhotic patients, while there was no difference in the RA contractile strain. Early diastolic and systolic RA strain rates were significantly lower in cirrhotic patients than in controls, whereas there was no difference in the RA late diastolic strain rate between the two groups. Transaminases and bilirubin correlated negatively with RV global longitudinal strain and RV-free wall strain in patients with end-stage liver cirrhosis. The Model for End-stage Liver Disease (MELD) score, predictor of 3-month mortality, correlated with parameters of RV structure and systolic function, and RA active function in patients with end-stage liver cirrhosis. CONCLUSIONS: RA and RV remodeling is present in patients with end-stage liver cirrhosis even though RV systolic function is preserved. Liver enzymes, bilirubin, and the MELD score correlated with RV and RA remodeling

    Screened hybrid functional applied to 3d^0-->3d^8 transition-metal perovskites LaMO3 (M=Sc-Cu): influence of the exchange mixing parameter on the structural, electronic and magnetic properties

    Full text link
    We assess the performance of the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid density functional scheme applied to the perovskite family LaMO3 (M=Sc-Cu) and discuss the role of the mixing parameter alpha (which determines the fraction of exact Hartree-Fock exchange included in the density functional theory (DFT) exchange-correlation functional) on the structural, electronic, and magnetic properties. The physical complexity of this class of compounds, manifested by the largely varying electronic characters (band/Mott-Hubbard/charge-transfer insulators and metals), magnetic orderings, structural distortions (cooperative Jahn-Teller like instabilities), as well as by the strong competition between localization/delocalization effects associated with the gradual filling of the t_2g and e_g orbitals, symbolize a critical and challenging case for theory. Our results indicates that HSE is able to provide a consistent picture of the complex physical scenario encountered across the LaMO3 series and significantly improve the standard DFT description. The only exceptions are the correlated paramagnetic metals LaNiO3 and LaCuO3, which are found to be treated better within DFT. By fitting the ground state properties with respect to alpha we have constructed a set of 'optimum' values of alpha from LaScO3 to LaCuO3: it is found that the 'optimum' mixing parameter decreases with increasing filling of the d manifold (LaScO3: 0.25; LaTiO3 & LaVO3: 0.10-0.15; LaCrO3, LaMnO3, and LaFeO3: 0.15; LaCoO3: 0.05; LaNiO3 & LaCuO3: 0). This trend can be nicely correlated with the modulation of the screening and dielectric properties across the LaMO3 series, thus providing a physical justification to the empirical fitting procedure.Comment: 32 pages, 29 figure

    Phase diagram of the pp-spin-interacting spin glass with ferromagnetic bias and a transverse field in the infinite-pp limit

    Full text link
    The phase diagram of the pp-spin-interacting spin glass model in a transverse field is investigated in the limit p→∞p \to \infty under the presence of ferromagnetic bias. Using the replica method and the static approximation, we show that the phase diagram consists of four phases: Quantum paramagnetic, classical paramagnetic, ferromagnetic, and spin-glass phases. We also show that the static approximation is valid in the ferromagnetic phase in the limit p→∞p \to \infty by using the large-pp expansion. Since the same approximation is already known to be valid in other phases, we conclude that the obtained phase diagram is exact.Comment: 16 pages, 4 figures. another additional author, some amendment

    Mechanisms of Crustal Anatexis: a Geochemical Study of Partially Melted Metapelitic Enclaves and Host Dacite, SE Spain

    Get PDF
    To shed light on the mechanisms of crustal anatexis, a detailed geochemical study has been conducted on minerals and glasses of quenched anatectic metapelitic enclaves and their host peraluminous dacites at El Hoyazo, SE Spain. Anatectic enclaves, composed of plagioclase þ biotite þ sillimanite þ garnet þ glass K-feldspar cordierite þ graphite, formed during the rapid heating and overstepped melting of a greenschist-facies metapelite, and finally equilibrated at 850 508C and 5^7 kbar. Glass appears as melt inclusions within all mineral phases and in the matrix of the enclaves, and has a major element composition similar to that of peraluminous leucogranites. Melt inclusions and matrix glasses have normative quartz^orthoclase^albite compositions that plot in the vicinity of H2O-undersaturated haplogranite eutectics. Melt inclusions show some compositional variability, with high Li, Cs and B, low Y, first row transition elements (FRTE) and rare earth elements (REE), and zircon and monazite saturation temperatures of 665^7508C.They are interpreted as melts produced by muscovitebreakdown melting reactions at the onset of the process of rapid melting and mostly under H2O-undersaturated conditions. Compared with melt inclusions, matrix glasses show less compositional variability, lower large ion lithophile element contents, higher Y, FRTE and REE, and higher zircon and monazite saturation temperatures ( 695^8158C).They are interpreted as former melts recording the onset of biotite dehydration-melting. Matrix glasses in the dacite are compositionally different from glasses in the enclaves, hence the genetic connection between metasedimentary enclaves and dacite is not as straightforward as previous petrographic and bulk major element data suggest; this opens the possibility for some alternative interpretation. This study shows the following: (1) melt inclusions provide a window of information into the prograde evolution of anatexis in the enclaves; (2) melting occurred for the most part under H2O-undersaturated conditions even if, because of the rapid heating, the protolith preserved most of the structurally bound H2O contained at greenschist facies up to the beginning of anatexis, such that the excess H2O maximized the amount of H2O-undersaturated melt generated during anatexis; (3) although a large proportion of accessory minerals are currently shielded within major mineral phases, they have progressively dissolved to a considerable extent into the melt phase along the prograde anatectic path, as indicated by the relative clustering of accessory mineral saturation temperatures and closeness of these temperatures to those of potential melting reactions; (4) the dacite magma was probably produced by coalescence of melt
    • …
    corecore