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ABSTRACT 

We explore the controls, mechanisms and timing of generation of primary melts and their 

compositions, and show that the novel studies of melt inclusions in migmatites can provide 

important insights into the processes of crustal anatexis of a particular rock. Partial melting in 

the source region of granites is dependent on five main processes: (i) supply of heat; (ii) 

mineral-melt interface reactions associated with the detachment and supply of mineral 

components to the melt, (iii) diffusion in the melt, (iv) diffusion in minerals, and (v) 

recrystallization of minerals. As the kinetics of these several processes vary over several 

orders of magnitude, it is essential to evaluate in Nature which of these processes control the 

rate of melting, the composition of melts, and the extent to which residue-melt chemical 

equilibrium is attained under different circumstances. To shed light on these issues, we 

combine data from experimental and melt inclusion studies. First, data from an extensive 

experimental program on the kinetics of melting of crustal protoliths and diffusion in granite 

melt are used to set up the necessary framework that describes how primary melt 

compositions are established during crustal anatexis. Then, we use this reference frame and 

compare compositional trends from experiments with the composition of melt inclusions 

analyzed in particular migmatites. We show that, for the case of El Hoyazo anatectic enclaves 

in lavas, the composition of glassy melt inclusions provides important information on the 

nature and mechanisms of anatexis during the prograde suprasolidus history of these rocks, 

including melting temperatures and reactions, and extent of melt interconnection, melt 
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homogenization and melt-residue equilibrium. Compositional trends in several of the 

rehomogenized melt inclusions in garnet from migmatites/granulites in anatectic terranes are 

consistent with diffusion in melt-controlled melting, though trace element compositions of 

melt inclusions and coexisting minerals are necessary to provide further clues on the nature of 

anatexis in these particular rocks. 

Keywords: Crustal anatexis; granite; mechanisms; kinetics; timeframes; primary melt 

composition; diffusion in melt; melt inclusions 

1. Introduction 

Granitic magmas sensu lato play a critical role in both continental crust growth and its 

internal differentiation. However, the details of processes connecting granitic magmas in their 

source region with granitic intrusions, or their volcanic equivalents, are far from clear.  

Focused specifically on the differentiation of continental crust, field-based petrological and 

geochemical studies of migmatites and allochthonous crustal granites, experimental studies, 

and phase equilibria modeling, constitute a “3-dimensional” approach to attack this problem 

(e.g. Clemens, 2006; White et al., 2007, 2011; Sawyer, 2008; Brown, 2013; and references 

therein). Each of these approaches, however, has drawbacks. Allochthonous granitoids and 

volcanic equivalents are the end products of anatexis and crustal differentiation, and their 

study provides a partial view of the process because primary melt compositions are 

established, and parental magmas generated, at deeper sites of melting. Although exhumed 

regional migmatitic terranes permit the direct observation of anatectic processes, classical 

petrological and geochemical studies of these terranes face a number of complexities, which 

make it difficult to retrieve the primary melt and parental magma compositions. These 

complexities include that (i) anatectic terranes record the superposition of prograde and 

retrograde processes, where partial melting occurs concomitantly to differential stress and 

deformation, (ii) primary melt may have fractionated and partially escaped the system, (iii) 

perfect segregation of melt from residue seems very unlikely, (iv) melt produced at deeper or 

adjacent crustal levels may have entered the system, (v) former melt present above the solidus 

has crystallized upon cooling, and (vi) H2O dissolved in that melt has escaped and/or reacted 

with the residue (e.g. Brown, 2002, 2013; Sawyer, 2008, 2014; White and Powell, 2010; and 

references therein). Most of the experimental studies conducted on crustal anatexis provide 

equilibrium mineral and melt compositions at particular P-T-X conditions, whereas the 

continental crust is compositionally heterogeneous (Rudnick and Gao, 2003) and, so far, 
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equilibrium melting seems to be the exception rather than the rule (e.g. Bea, 1996; Villaros et 

al., 2009a). Thermodynamic models also assume melt-solid equilibrium. In addition, there is a 

lack of precise thermodynamic data for several key phases, or end-members solid solutions 

related to minor components in the system. This produces, for instance, discrepancies between 

the compositions of model and natural or experimental melts (e.g. Grant, 2009; White et al., 

2011; Bartoli et al., 2013a). 

Some studies have concluded that compositional heterogeneities of crustal granitoids are 

inherited from the source region and, therefore, that somehow they reflect the composition of 

magmas present at the sites of generation (Deniel et al., 1987; Hogan and Sinha, 1991; 

Presley and Brown, 1999; Glazner et al. 2004; Clemens and Benn, 2010). More commonly, 

however, it is concluded that compositions of crustal granitoids do not correspond to those of 

the primary anatectic melts produced during their genesis, due to one or a combination of 

several processes. These include: (i) magmatic differentiation due to e.g. “en route” fractional 

crystallization, that may start right at or relatively close to the source area (Barr, 1985; 

Sawyer, 1987, 2014; Chappell and White, 1992; Milord et al., 2001; Morfin et al., 2014; 

Brown et al., 2016; Carvalho et al., 2016); (ii) entrainment of residual (Chappell et al., 1987; 

Chappell, 1996), peritectic (Stevens et al., 2007; Villaros et al., 2009b) or both residual and 

peritectic (Sawyer, 2014; García-Arias and Stevens, 2016) minerals coexisting with the 

primary melt; (iii) mixing and mingling with mantle derived magmas (Wall et al., 1987; 

Collins, 1996; Gray and Kemp, 2009). As a consequence of the previous observations, we still 

have a limited understanding of the nature and intensity of crustal differentiation associated 

with the geodynamic settings where crustal granitic magmas are produced, including the ratio 

of crustal growth to crustal reworking (e.g. Brown, 2013). 

This contribution seeks to provide information on the very first stages of crustal melting, 

and particularly on the mechanisms and time frames of melt generation, and controls on the 

composition of primary melts before segregation from the solid fraction. This represents the 

starting point of the process of generation of crustal granitoids. Recently, Sawyer (2014) has 

investigated in a contact metatexite migmatite the earliest stages of segregation of anatectic 

melts, and concluded that it is accomplished via the movement of melt from in situ neosomes 

into adjacent 0.5 mm-long micropores and 1 mm-long microleucosomes, that subsequently 

grow into longer (up to ≈10-20 mm) microleucosomes by progressive destruction of the 

bridges of matrix separating originally neighboring small microleucosomes. Our study refers 

to the earliest stages of melting, when melt forms and remains in contact with, or at short 

diffusion distances from, its residue. During this window of time, several processes leading 
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towards mineral-melt equilibration and melt homogenization may occur, e.g. diffusion in 

minerals and melt, and recrystallization of minerals. Considering diffusivities of elements in 

granitic melts at anatectic conditions (e.g. Acosta-Vigil et al., 2012a), together with the 

shortest reported time frames for melt segregation (Saywer, 1991; Harris et al. 2000), and 

estimations of segregation distances associated with the generation of leucosomes (Fig. 1a; 

Sawyer, 2008, 2014), our study describes the situation possibly before the segregation of melt 

into microleucosomes and, definitely, before migration of melt into cm-dm-scale in-situ 

leucosomes. Nevertheless, this time window may vary depending on the tectonic setting and 

nature of (contact versus regional) anatexis. This contribution, therefore, deals with questions 

such as what are the controls on the compositions of initial melts generated in different 

microstructural locations of a protolith, how individual liquid aliquots at different 

microstructural sites evolve towards a homogeneous melt phase, what are the time frames of 

melt generation, melt homogeneization and melt-residue equilibration, and how these time 

frames compare with those inferred for separation of melt from residue. 

The most direct way to accomplish the investigation of the first stages of melting is 

through either studies of contact anatectic rocks that reached conditions at, or slightly above 

their solidus (Holness et al., 2005; Sawyer, 2014), or via experimental simulations (e.g. 

Mehnert et al., 1973; Arzi, 1978; Brearley and Rubie, 1990; Buick et al., 2004; Acosta-Vigil 

et al., 2006a; London et al., 2012). Considering the novel studies of melt inclusions (MI) or 

nanogranitoids in migmatites (Cesare et al., 1997, 2009, 2015), a brand-new approach that 

has the potential to increase our knowledge of the onset of crustal melting and mechanisms of 

anatexis in particular case studies of migmatites, is the combination of compositional data 

from MI and experiments on the kinetics of melting. In this contribution, we use previously 

published but never compared data sets from: (i) experimental studies on the kinetics of 

melting and diffusion in the granite system (Acosta-Vigil et al., 2012a), and (ii) melt inclusion 

studies documenting primary melt compositions in (ii.a) anatectic enclaves, where the process 

of regional partial melting has been frozen due to quenching upon ascent and extrusion within 

the host magma (Cesare, 2008), and (ii.b) in regional migmatites and granulites (Cesare et al., 

2015; Ferrero et al., 2015; Acosta-Vigil et al., 2016; Bartoli et al., 2016a). Thus, we first set 

up a theoretical scenario describing the several processes acting concomitantly and controlling 

the nature of primary anatectic melt compositions prior to segregation (section 2 of the paper); 

then, we review the results of kinetics experiments providing information on the interplay 

between, and role/imprint of each of these processes (section 3); finally, and after discussing 

the main limitations of experiments to replicate and study natural anatexis (section 4), we 
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introduce the reader to the study of MI in anatectic rocks, and use the information provided by 

kinetics experiments as a framework to interpret the previously published compositions of MI 

in terms of nature and mechanisms of crustal anatexis in Nature (section 5). 

2. Processes and controls during the onset of partial melting: a theoretical scenario 

We start by assessing the simplest route to producing a silicate liquid of granitic 

composition; that is, the melting of a near-minimum granite itself. Consider that a 

homogeneous, fine-grained crustal rock, such as an aplite, reaches some given P-T conditions 

at or just above its solidus (Fig. 1b). At equilibrium, a certain proportion of homogeneous 

melt will coexist with an assemblage of homogeneous minerals. However, the equilibrium 

proportions and compositions of phases will not form instantaneously, and each phase will 

likely follow a path in proportion (wt%)-composition (X)-time (t) space towards the 

conditions of equilibrium (Fig. 1c). It is the interplay between (i) the kinetics of processes 

governing the generation and homogenization of melt, and equilibration between melt and 

residue, versus (ii) the timing of melt segregation and extraction, that will determine the 

position in wt%-X-t space of every single phase at the time of melt-residue separation with 

respect to their equilibrium values, and hence the extent to which primary anatectic melts are 

homogeneous and at equilibrium with their bulk residue before leaving the source area.  

It is commonly assumed that melting begins at multiphase grain junctions where all 

necessary reactants meet (e.g. Harris et al., 2000; Brown, 2010; Sawyer, 2014), and that the 

first melt produced has eutectic composition (e.g. Harris et al., 2000). Although we must be 

cautious when extrapolating experimental observations to Nature (see section 4), the 

experimental melting of solid granite cylinders where the distribution and composition of melt 

through time have been carefully documented, shows that melt forms an interconnected 

network along most mineral boundaries and cleavages right from the very beginning of 

melting, e.g. in the shortest 5-day experiment, which is instantaneous at geologic time scales 

(Fig. 2). In addition, it was found that initial melts are not necessarily eutectic in composition 

(Acosta-Vigil et al., 2006a). The beginning of crustal melting and establishment of primary 

melt compositions, therefore, might be more complex than previously considered. Below, we 

isolate some of the main processes that may occur concomitantly during anatexis. 

Theoretically once the first drop of melt has formed at multiphase grain junctions at the 

very onset of anatexis, there are several processes taking place during static melting, and each 

of them has its own particular rate; these at least include the following (Fig. 3). (1) Reactions 

at mineral-melt interfaces which liberate mineral components that enter the melt. (2) 
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Diffusion in the melt of these components in response to chemical gradients, which promotes 

additional mineral dissolution (if undersaturation persists) and melt homogenization. (3) 

Diffusion within minerals to equilibrate them with the melt. This includes diffusion of major 

elements in the case of solid solution minerals, such as Na-Ca in Pl and Fe-Mg in Bt, Grt and 

Crd (mineral abbreviations after Kretz, 1983); and diffusion of trace elements and isotopes for 

certain minerals that control their geochemistry during anatexis, such as Sr, Eu in Pl; Ba, Sr, 

Eu in alkali feldspar; Rb, Ba, V, Nb in Bt; Sc, Y, HREE in Grt; Be in Crd. (4) 

Recrystallization of minerals in order also to equilibrate them with melt. 

Provided that there is always enough heat available for melting (see below), the slowest 

process between interface reactions and diffusion in the melt will constitute the rate-limiting 

process during anatexis, and will control the proportion of melt. The bulk composition of melt 

will also depend on the interplay between interface reactions and diffusion in melt, though 

recrystallization of minerals and, to much lesser extent diffusion in minerals, may also play a 

role. The extent of melt homogeneity will be dictated by diffusivities in the melt. The extent 

of melt-residue equilibration, instead, will be controlled by the rates of diffusion in minerals, 

which are much slower than those for processes at interface reactions and diffusion in melt. 

However, if mineral recrystallization occurs, it will greatly accelerate the process by 

instantaneously equilibrating minerals and adjacent melt. 

Another important process to consider is (5) the diffusion of heat through the protolith and 

its control on the rate of melting, modulated through the interplay between heating rate and 

the latent heat of melting. The geodynamic or geologic scenario determines the amount of 

heat that is available to diffuse through the rock, and hence the rate of heat supply during 

anatexis. This rate, in turn, determines the amount of heat that is available for melting, as 

melting reactions are endothermic. At low rates of heat supply, the diffusion of heat may 

control the rate of melting and melting may proceed very slowly or stop temporarily, even if 

the P-T-X conditions are appropriate for the melting reaction to proceed. Whereas, in cases of 

high rates of heat supply, the T during melting in the system may increase above that of the 

equilibrium melting T, hence producing some overstepping of the melting reaction. The extent 

of overstepping, in turn, is a key factor in determining the relative roles of processes (1) 

through (4) during anatexis (see below). 

Two useful concepts in order to explore the extent and timing of melt-residue equilibration 

during anatexis include (Figs. 1b, c): the equilibration volume, or volume of the studied rock 

which, at some given P and T reacts to be in chemical equilibrium (Powell and Downes, 

1990; Stüwe, 1997); and the minimum volume for equilibrium, or the smallest volume of 
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rock that, when reaching chemical equilibrium at some given P and T, ensures also chemical 

equilibrium in the entire system. Chemical equilibrium in a rock will be established when the 

equilibration volume coincides with, or contains, the minimum volume for equilibrium. 

Figure 4 describes schematically how each of the processes (1) through (4) above may 

control the proportion, composition and homogeneity of melt, as well as the extent of melt-

residue equilibration, before segregation of melt from its residue (see sections below). 

Initially, we assume a situation where the heat supply is infinite, such as to at least maintain 

the temperature of the system at an approximately constant value above the equilibrium 

melting T, as in the case of rock melting and mineral dissolution experiments conducted at 

constant T. In natural scenarios, this may correspond to crustal anatexis during intrusion of 

hot mantle magmas into the continental crust, or during the instantaneous influx of H2O-rich 

fluids in rocks that were already well above their wet solidus. In these cases, the rate of heat 

supply is initially infinite, and the T of the system will be set rapidly to, though transiently, a 

value above the equilibrium melting T. We also assume H2O-saturated and hydrostatic 

conditions. After evaluating the role of, and interplay among processes (1) through (4) at 

these conditions (section 3), we will explore the main limitations to scaling experimental 

results up to natural scenarios, e.g. how variations in size (spatial scale), rate of heat supply 

(temporal scale), aH2O and the presence of differential stress may change the conclusions 

(section 4). 

2.1. Interface reaction-controlled melting 

When the kinetics of the reactions at the interfaces are sluggish compared to diffusion in 

melt and even minerals, mineral components are liberated very slowly to the interface melt, 

and saturation of the melt in, and equilibration with, the minerals takes a long time, even at 

the interfaces. Diffusion in melt can be comparatively fast such as to entirely homogenize 

melt in the rock as dissolution and diffusion in minerals still proceed; this melt, however, is 

not at equilibrium with the residue (see below). In this situation, the interface reactions are the 

rate-controlling process regarding the proportion of melt, and also controls, together with 

diffusion in minerals, the bulk melt composition, whereas diffusion in the melt controls the 

extent of melt homogeneity (e.g. Zhang et al., 1989; Liang, 1999; Shaw, 2004). In the case of 

minerals that neither constitute solid solutions nor control the geochemistry of any trace 

element/isotope during anatexis, e.g. Qtz (Fig. 4a), the time frame for melt-residue 

equilibrium (i.e. Qtz saturation in the bulk melt) is also controlled by the kinetics of the 

interface reaction, and will likely coincide with the time when the equilibrium proportion of 
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melt is generated. However, for the case of minerals that are solid solutions and/or minerals 

controlling the geochemistry of certain trace elements/isotopes, e.g. Pl (Fig. 4b), and in the 

absence of recrystallization, the time frames for melt-residue equilibration will be controlled 

by the rates of diffusion in the minerals. It is uncertain if interface reactions play any 

significant role during anatexis in Nature, though kinetic experiments suggest that they might 

be important during melting at low degrees of temperature overstep (Acosta-Vigil et al., 

2006a; see below). 

2.2. Diffusion in melt-controlled melting 

When the rates at which interface reactions proceed are faster than the rates of diffusion in 

melt, mineral components are delivered quickly to the melt, which rapidly becomes saturated 

in, and reaches equilibrium with, the mineral at the interface. Diffusion in the melt is 

comparatively too slow to keep pace with interface reactions and carry quickly these mineral 

components away from the interface melt. This process is required to both homogenize the 

melt and to promote further mineral dissolution until mineral saturation in, and equilibration 

with the bulk melt is achieved. In this case, diffusion in the melt is the rate-controlling process 

that governs the proportion, extent of homogeneity and, largely, bulk composition of melt 

and, in the case of pure minerals with very low concentrations in trace elements (Fig. 4c), also 

the extent of mineral-melt equilibrium. For major minerals that constitute solid solutions 

and/or control the geochemistry of particular trace elements/isotopes (Fig. 4d), in the absence 

of recrystallization, it is again the rates of diffusion in minerals, which are significantly slower 

than diffusion in melt (Bea, 1996, and references therein; Table 1), that control equilibration 

time frames between minerals and melt (e.g. Liang, 2000, 2003) 

2.3. Role of diffusion in minerals 

Due to the relatively high temperatures, diffusion in minerals will continuously occur 

during high-grade metamorphism and crustal anatexis, and tends to erase any existing 

concentration gradient and to produce mineral-melt equilibrium distributions of major 

elements, trace elements and isotopes at the P and T of melting. Diffusion in minerals at 

crustal anatectic temperatures, however, is in general rather sluggish, particularly when 

compared to diffusion in the melt (e.g. Bea, 1996; Brady and Cherniak, 2010; Zhang et al., 

2010, and references therein; Table 1) and published time frames of melt 

segregation/extraction (e.g. Sawyer, 1991; Harris et al., 2000; Villaros et al., 2009a). For 

instance, for common grain sizes in high-grade metamorphic rocks of ≈1 mm, 5 mm or 10 

mm, at 800 ºC, diffusion will take long to extremely long time frames to homogenize Ca-Na 
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in Pl (≥10 Ma in all cases; diffusivities from Liu and Yund, 1992; Baschek and Johannes, 

1995); ≈0.1, 3 or 10 Ma, respectively, to homogenize Sr in Pl (diffusivities from Cherniak and 

Watson, 1994); variable time frames to homogenize Fe-Mg-Ca in Grt, depending on size and 

reported diffusivities (e.g. ≈2, 50, 200 Ma, respectively, with likely longer time frames for Ca; 

using intermediate diffusivities from Chakraborty and Ganguly, 1992; Perchuk et al., 2009); 

and long to extremely long time frames to homogenize Y and HREE in Grt (≥10 Ma in all 

cases; diffusivities from Van Orman et al., 2002; Cherniak, 2005). Frequent examples of 

compositional zoning in residual and peritectic minerals of migmatites (e.g. Ca-Na in Pl, even 

if weak: Sawyer, 1998, 2008; Ca and Y-HREE in Grt: Spear and Kohn, 1996; Hermann and 

Rubatto, 2003; Anczkiewicz et al., 2014; Barich et al., 2014) testify that, during anatexis, melt 

does not commonly equilibrate with, at least, the bulk residue, and hence that diffusion in 

minerals is a key rate limiting factor for equilibration, not only regarding the trace elements 

(Bea, 1996) but also the major elements. In this respect, the systematic study of plagioclase 

compositions (in the protolith – if available – versus the melanosome versus the leucosomes) 

constitutes one key monitor of the major element melt-bulk residue equilibration (Mehnert, 

1968; Johannes, 1980; Sawyer, 2008). Large An/An+Ab differences between melt and 

residual plagioclase are expected during crustal anatexis at equilibrium (e.g. in the Qtz-Or-

Ab-An-H2O-CO2 system; Johannes and Holtz, 1992). Similar or slightly Ab-richer 

compositions of igneous versus residual plagioclase in migmatites (e.g. Mehnert, 1968; 

Sawyer 1998, 2008; Carvalho et al., 2016), hence, seem to overall indicate anatexis under 

disequilibrium conditions regarding the major elements, or at least the partitioning of Na-Ca 

between melt and residue. Other explanations, e.g. Pl homogenization at low cooling rates and 

high H2O activities during the late stages of migmatite genesis (Johannes and Holtz, 1992), 

seem less likely given the long time frames required (see above). 

2.4. Role of recrystallization 

Mineral recrystallization, whatever the reaction mechanism (e.g. through dissolution 

into, and reprecipitation from the melt at the boundary; Johannes and Koepke, 2001), can 

proceed at much faster rates than diffusion in minerals, and hence produce equilibration 

between minerals and (adjacent) melt much more rapidly. Therefore, it can have an important 

role in determining the composition of primary anatectic melts, the extent of melt-residue 

equilibration and, coupled with melt extraction, on the nature of crustal differentiation. 

Despite this, there are few studies that provide information on this topic (Johannes, 1980, 

1989; Johannes and Holtz, 1992; Icenhower and London, 1995; Nakamura and Shimakita, 
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1998; Johannes and Koepke, 2001; Acosta-Vigil et al., 2006a; Villaros et al., 2009b), and 

hence our current understanding of the circumstances and rates at which different minerals 

recrystallize during anatexis is still rather poor. London et al. (2012) have used experiments to 

qualitatively assess the efficiency of recrystallization to equilibrate residual minerals and 

coexisting melts. In general, minerals of low density (quartz, feldspars) or with large 

intercrystalline channels or layer spacing (micas, cordierite), can re-equilibrate at rates on the 

scale of the experiments, in days to months, whereas denser phases (garnet, spinel) are more 

refractory, even when their compositions are far from the equilibrium with the melt. Some 

detailed studies in diatexites, however, have documented two different compositional groups 

of biotites, interpreted as crystals either residual or crystallized from the melt; the residual 

biotites may appear trapped within leucosomes (Sawyer, 1998; Carvalho et al., 2016). 

3.  Information from kinetics experiments: interplay among, and imprint of processes  

3.1. Mineral dissolution and rock core melting experiments: role of reaction overstepping 

3.1.1. Melting at low degrees of overstepping 

Experiments where a macroscopic solid core of fine-grained granite (diameter ≈3.5 mm, 

length ≈7 mm, mean grain size ≈0.3 mm) is partially melted via the wet granite solidus show 

that, at relatively low degrees of T overstepping of the melting reaction (≈10 to 60 º C; with 

an infinite supply of heat, see above), and from the shortest experimental time (18-hr 

experiment, showing ≤ 5 vol% of melt), melt occupies most grain boundaries — most triple 

junctions and Qtz-Pl, Qtz-Or boundaries, but to a lesser extent the Pl-Kfs, Qtz-Qtz boundaries 

— and forms an interconnected network (Fig. 5a). This distribution of melt, showing effective 

dihedral angles of zero, corresponds to a reaction-controlled microstructure (e.g. Holness and 

Sawyer, 2008; Holness, 2010). Melt composition is rather homogeneous, quite close to (≈0-10 

wt% CIPW normative away from) the corresponding haplogranite minimum, and constant 

from the shortest (18-hr) to the longest (4-month) experiments. The melt proportion increases 

from ≈3-4 vol% (18-hr experiment) to ≈20-25 vol% (3-4-month experiment). During this time 

span residual minerals (Pl, Kfs) show compositions similar to those in the starting material 

and are not in equilibrium with the melt, likely not even at the interfaces (Acosta-Vigil et al., 

2006a). These results are in accordance with a situation where mineral components added to 

the melt have enough time to diffuse across the small distances among crystals and 

homogenize the melt, but interface reactions are too sluggish to allow mineral-melt 

equilibration even at the interfaces (see above, and Figs. 4a, b). The kinetics of the interface 
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reactions, therefore, control the rate of melt production (and thus length scales of diffusion in 

melt) and time frames of melting. Diffusion in the melt, instead, controls the extent of melt 

homogeneity. Hence during melting at low degrees of T overstepping, and for the specific 

case of fine-grained and homogeneous protoliths (Fig. 1), the first melts produced will be 

homogeneous, very close to the minimum melt composition but out of equilibrium with the 

residue. Under conditions of infinite heat supply, the rate of melting is high (≈20-25 vol% in 

3-4 months) and, therefore, it is reasonable to assume that equilibrium between melt and non 

solid solution minerals with very low concentrations of trace elements (e.g. Qtz) should be 

quickly established. However, melt-residue equilibration regarding solid solution minerals 

and/or minerals with high concentrations of trace elements will involve longer time frames, as 

it is controlled by diffusion in the minerals. Equilibrium between certain minerals/elements 

and the melt will not likely be achieved, for instance Pl with respect to Na-Ca or Grt with 

respect to Y-HREE. Depending on diffusivities and grain size, other minerals/elements may 

partially or totally equilibrate with the melt, e.g. Sr in Pl (see above). Therefore in this case, 

and during the experimental time frames, we might consider that the equilibration volume 

corresponds to the volume of melt produced, as this melt is mostly homogeneous (Fig. 5a). 

During geologic time frames, some minerals/elements may join the equilibration volume (e.g. 

pure minerals such as Qtz that may achieve saturation in the melt, or Pl with respect to Sr), 

but in general the equilibration volume will not coincide with, or contain, the minimum 

volume for equilibrium, because of the general sluggish diffusivities of elements in minerals 

(compare Figs. 1b and 5a; Table 1).  

3.1.2. Melting at high degrees of overstepping 

Single mineral (Qtz, Ab, Kfs, Crn, And) dissolution experiments into haplogranite melt 

and granite core melting experiments where, at a given P, the experimental T was set to ≥100 

º C above the equilibrium T, show that melting occurs very rapidly (e.g. ≈50 wt% of melt 

generated in ≈15 days during core melting experiments) and, also, that minerals and interface 

melt reach chemical equilibrium rapidly, after ≈15-20 days. However, melt is heterogeneous 

from the shortest experimental time, away from (up to 20 wt% off) the haplogranite 

minimum, and does not homogenize within experimental time frames, even in the longest 6-

month experimental run. Furthermore, in the core melting experiments melt forms an 

interconnected network (Fig. 5b) even in the shortest 11-hr experiment (Acosta-Vigil et al., 

2002, 2006a, 2006b). These results are in accordance with a scenario where the kinetics of 

mineral-melt interface reactions are quite fast, and diffusion in the melt is the rate-limiting 
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process that controls the rates of melt generation and homogenization (see above, and Figs. 

4c, d). Hence, during melting at high degrees of T overstepping, and even for the case of fine-

grained and homogeneous protoliths (Fig. 1a), the first melt produced will be heterogeneous 

simply because melting is rapid enough to create long diffusion paths in melt which, for the 

short experimental time scales and given diffusivities in granitic liquids, do not enable melt to 

homogenize. 

Mineral-melt equilibrium is rapidly achieved at the interfaces. It is important to note that, 

during melting at high degrees of overstepping, and in contrast with the previous case, 

recrystallization of the residue occurs concomitantly with anatexis. In the particular case of 

the granite core melting experiments, Ab-rich Pl is the only solid solution and trace element-

bearing major mineral coexisting with the melt (Kfs and Bt disappeared at the beginning of 

melting), and it recrystallized in the time frame of days to months to an An-richer Pl, 

apparently at or closer to equilibrium with the surrounding melt (Acosta-Vigil et al., 2006a). 

This implies that bulk melt-residue equilibration will be achieved much faster than during 

melting at low degrees of T overstepping, and possibly during the time frames of anatexis in 

Nature. The reason for this is that recrystallization establishes instantaneously equilibrium 

distributions of elements between minerals and surrounding melt, and hence diffusion in melt 

will be the process responsible for both melt homogenization and bulk melt-residue 

equilibration. The equilibration volume during experimental time frames corresponds to the 

mineral-melt interfaces, as minerals and melt reach equilibrium along these after some tens of 

days. For the most favorable case of a fine-grained homogeneous protolith where, in this 

particular case, the minimum volume for equilibrium corresponds to a cube with a length of 

size ≈1-2 mm (Fig. 1b), the equilibration volume will contain the minimum volume for 

equilibrium only after Si, the slowest diffusing component in the melt, homogenizes within 

this ≈1-8 mm
3
 cube, i.e. in tens of years to a few hundred of years (Acosta-Vigil et al., 2012a; 

Fig. 6; see below). Hence chemical equilibrium is likely to be reached during geologic time 

frames. Equilibration time frames, however, increase considerably for the case of 

heterogeneous protoliths, e.g. up to 1-10 Ma if the source area shows a compositional banding 

at the scale of ≈50 cm, because in this case the minimum volume for equilibrium may 

correspond to a cube/polyhedron with a length of side ≈1 m (Figs. 1d, 6; see Acosta-Vigil et 

al., 2012a, for time frames of equilibration at other length scales). 

3.2. Diffusion experiments in granitic melts: diffusion controls on primary melt composition 
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During melting at high degrees of overstepping, the proportion and composition of melt, 

and the extent of bulk melt-residue equilibration from generation to segregation/extraction, is 

controlled by the diffusion properties of the melt. Experimental melt is heterogeneous from 

the very beginning of anatexis (hours) to the longest run (months): melt produced next to Qtz 

has the highest Si concentrations and Al/Ca molar ratios, and lowest Al, Ca, Na, K 

concentrations and Al/K molar ratios. Whereas melt produced next to either Pl or Kfs has the 

highest Al, Ca, Na, K and Al/K, and lowest Si and Al/Ca. Surprisingly, the Al/Na molar ratio 

is similar in melts next to Qtz, Kfs and Pl (Figs. 7 and 9 of Acosta-Vigil et al., 2006a). 

Although during melting of crustal rocks some of the above compositional features are 

expected (e.g. Si concentrations highest next to Qtz, or Al highest next to feldspars), others 

are not (e.g. highest Al/K molar ratios next to Kfs, or similar Al/Na molar ratios in all 

microstructural locations). This is due to the fact that oxide components do not diffuse 

independently of each other in granitic melts, and hence melt homogenization does not occur 

as a simple mixture between compositional poles. Rather, it entails fractionation among the 

several melt components dictated by the systematics of diffusion in the melt. Because to a 

greater or lesser extent diffusion in the melt does control melt compositions during anatexis 

between melt generation and its extraction, it is important to know the systematics of 

diffusion in granitic melts, in order to interpret for example the compositions of analyzed MI 

within peritectic minerals, leucosomes in anatectic terranes, or extent and systematics of 

interaction between materials (two different magmas, or a magma and reactive neighboring 

rocks) in the highly heterogeneous continental crust. Below we first introduce some concepts, 

including the new notion of “field diffusion”, which are key for understanding these diffusion 

systematics, and then explain the constraints that these diffusion properties of granite melt 

impose on the compositions of primary anatectic melts. 

3.2.1. Diffusion coupling and uphill diffusion; local diffusion versus field diffusion 

One important and common complexity of chemical diffusion in multicomponent systems 

is that the set of components that we arbitrarily choose, i.e. the oxide constituents, may not 

diffuse independently of each other due to structural, charge balance and/or volume 

constraints. This is referred to as diffusion coupling between, or coupled diffusion of, 

components. Thus, in order to describe the diffusion properties of a N-component system at 

some given P-T-X conditions, a N-1 by N-1 diffusion matrix, [D], must be provided. Referred 

to the oxide components reference frame, the eigenvectors of [D] provide the stoichiometries 

of a new set of N-1 components, which are expressed as linear combinations of the “old” 
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oxide components, that diffuse independently of each other, i.e. that uncouple chemical 

diffusion. Thus, the Al-eigenvector represents the direction in the oxide composition space 

along which Al erases its chemical gradients, even if that means that concentration gradients 

in other oxide components, that are coupled with the diffusion of Al, are temporarily created. 

This is referred to as uphill diffusion of these other oxide components, i.e. diffusion against 

its own concentration gradient, which constitute an expression of diffusion coupling. The 

eigenvalues of [D], instead, furnish the diffusivities of each of these new set of N-1 

independently diffusing components. As [D] is not known a priori for a given system and P-

T-X conditions, eigenvectors and eigenvalues of [D] are obtained by inversion of 

experimentally produced oxide diffusion concentration profiles (e.g. Chakraborty, 1995; 

Liang, 2010).  

A new concept regarding the scale and mechanisms of diffusion in (granite) melts is the 

distinction between local diffusion and field diffusion (Morgan et al., 2008; London, 2009; 

Acosta-Vigil et al., 2012a; Morgan et al., under review). Local diffusion corresponds to the 

classical description of diffusion, based on previous modeling of heat transfer, and visualized 

as the random and relative motion of components in the system, under apparently local 

chemical gradients, whose associated concentration profiles show, for constant diffusion 

coefficients, exponential “tails” that can be described by the available solutions of the Fick´s 

empirical diffusion equations (e.g. Crank, 1975). Consequently, local diffusion does not imply 

any kind of large-scale chemical connection in the melt. Diffusion length scales associated 

with the local diffusion of a particular melt component would correspond to the maximum 

migration distances of individual atoms of this component. To illustrate this point, we 

consider the diffusion of Al in melt due to the presence of a local concentration gradient next 

to a dissolving corundum crystal that is undersaturated in, and providing Al atoms to, the melt 

(Fig. 7a). The diffusion of Al occurs by local diffusion (see below) and is restricted to the 

volume where the local concentration gradient in Al exists. Thus, if we could label in red 

color the atoms of Al present in melt that are coming from the dissolving Crn, and 

considering the oversimplication that to erase the associated Al chemical potential gradient 

only the red atoms will diffuse, it would be observed that changes in concentration of Al at 

any point along the diffusion path perpendicular to the Crn-melt interface, only occur after the 

arrival of “foreign” red Al atoms coming from the dissolving Crn. As in all previous 

experimental studies of chemical diffusion in (granite) melt, we have observed that diffusion 

profiles of Si, Al and H are satisfactorily explained by this mechanism (see below). 
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Morgan et al. (2008) proposed the term field diffusion to explain the extremely high 

mobility of Na and K in granite melts observed in diffusion studies by Acosta-Vigil et al. 

(2002, 2006a, 2006b, 2012a) and Morgan et al. (2008). These authors envisage that such high 

mobilities could be explained by the coordinated and contemporaneous migration of all atoms 

of a given component (Na and/or K) present in the entire melt reservoir, driven by a long-

range concentration (or chemical potential) gradient. Even if migration distances of the 

individual atoms are small, the coordinated migration of all atoms produces an apparently 

long-range migration of that component. Thus, field diffusion is capable of erasing 

compositional gradients or changing melt composition at rates that are several orders of 

magnitude greater than local diffusion, among other things because the effect of a coordinated 

movement of all individual atoms of a given component in the system, is to produce changes 

in concentration over distances that span the entire liquid, even though each individual atom 

moves only a small fraction of the size of the system. In addition, as the chemical gradient 

extends over the entire melt reservoir, this mechanism implies a geologically (and even 

experimentally) instantaneous chemical connectivity and change in composition across the 

entire system, which is important when considering the controls on melt composition in 

migmatites during anatexis (Acosta-Vigil et al., 2006a; London et al., 2012; see below) or in 

magmas during crystallization (London, 2008, 2014; Morgan et al., under review). 

Considering the previous example, during dissolution of Crn into, and establishment of an Al 

concentration grandient at the interface melt by local diffusion (Fig. 7a), the systematics of 

diffusion are such that Na diffuses uphill towards the interface due to coupled diffusion with 

Al, in a way that its concentration changes instantaneously (in hours) throughout the entire 

melt reservoir, ≈1 cm in length, to maintain the Al/Na molar ratio constant in the melt (see 

below). Hence we envisage that there is a coordinated and contemporaneous migration 

towards the interface of all atoms of Na in the melt. Thus, if we could label (as blue) a single 

atom of Na present at some point along the diffusion profile (Fig. 7b), the migration distance 

of this atom would be extremely small compared to the apparent diffusion length scale 

associated with the change in concentration of this component observed in the system. For 

more information on the phenomenon of field diffusion, readers are referred to Acosta-Vigil 

et al. (2002, 2006b, 2012a), Morgan et al. (2008, under review), London (2009) and London 

et al. (2012); for a comparison with previous explanations on the systematics of alkali 

diffusion in silicate melts, see Acosta-Vigil et al., 2012a; for an approach to the modeling of 

field diffusion, see Morgan et al. (under review). 
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In the next sections we summarize the information on the diffusion systematics of granite 

melts, that help to understand the controls that diffusion in melt may have on the composition 

of primary anatectic melts. This information comes from several types of diffusion 

experiments (mineral dissolution, glass hydration-melting and diffusion couples) conducted in 

the H2O-saturated, 5-component haplogranite system at 800 ºC and 0.2 GPa. These 

experiments provide part of a 4 x 4 diffusion matrix, including directions of uncoupled 

diffusion and diffusivities along some of them. Other information consists of effective binary 

diffusion coefficients (EBDC; Cooper, 1968), or diffusivities along directions in composition 

space that do not correspond to any of the directions of uncoupled diffusion. 

3.2.2. Diffusion of Si 

Silica diffuses independently of the other cations with a diffusivity of ≈2.5 x 10
-15

 m
2
/s, 

making it the slowest diffusing component in the system. Hence other cations are not coupled 

with the diffusion of Si, and Si represents one of the directions of uncoupled diffusion in 

composition space (Si-eigenvector; Acosta-Vigil et al., 2006b; see also Baker, 1991, Mungall 

et al., 1998). This is shown in Fig. 8, where concentration profiles represent the results from 

electron microprobe (EMP) traverses in glass (former melt) perpendicular to a Qtz-

haplogranite melt interface after some Qtz diffusive dissolution at 800 ºC, 0.2 GPa H2O, and 

two months of run time. At increasing experimental times Qtz and the interface melt reached 

equilibrium, the Si diffusion front progressively displaced away from the interface, and all 

other oxides components were 

 diluted, with their molar ratios being constant and similar to those in the starting melt [see 

Figs. 4, 11 of Acosta-Vigil et al. (2006b)]. During these experiments most of the diffusion in 

melt was accomplished by Si, which after two months migrated ≈300-400 µm from the 

interface by local diffusion. Hence Si diffusion occurred in response to the local Si 

concentration gradients produced at the interface after Qtz dissolution, and Si diffusion length 

scales were similar to maximum migration distances of single atoms of Si, producing local 

changes in composition. 

3.2.3. Diffusion of Al 

Alkalis are strongly coupled with, and assist the diffusion of Al in H2O-saturated 

haplogranitic melt. Hence a combination of Al, Na and K constitutes another direction of 

uncoupled diffusion in composition space, along which Al erases its concentration gradients 

in the melt (Al-eigenvector; Acosta-Vigil et al., 2002; see also Chakraborty et al., 1995; 

Mungall et al., 1998). Diffusivity along the Al-eigenvector, ≈1.5 x 10
-14

 m
2
/s, is the second 
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slowest in the system at the investigated conditions. In order to homogenize Al in the melt, 

therefore, alkalis diffuse concomitantly to, and follow Al. This is shown in Fig. 9, where 

concentration profiles show results from EMP traverses in melt after some diffusive 

dissolution of Crn (pure Al2O3) into an originally metaluminous (ASI≈1.0) H2O-saturated 

haplogranitic melt occurred (at 800 ºC, 0.2 GPa, 4 months of run time; Acosta-Vigil et al., 

2002). Compared with the starting melt composition, the interface melt shows an increase of 

Al and, also, of Na and K; hence alkalis have diffused uphill towards the interface and against 

their own concentration gradients, in order to couple with Al released into the melt by 

dissolution of Crn. During the experiment Al diffuses in the vicinity of the interface by local 

diffusion (as in the case of Si), in response to the local Al concentration gradient produced 

after dissolution of Crn. This is shown by the observation that, beyond the Al diffusion front, 

the Al/Si molar ratio and Si and Al concentrations are similar to those in the starting material. 

Instead, alkalis diffuse throughout the entire melt reservoir; this is demonstrated by the 

increase in ASI (from ≈1.00 to 1.10) and decrease in concentrations of Na and K (compared 

to those in the starting material) at the far end of the melt reservoir, at locations where Al 

from the dissolving Crn has not arrived yet. This necessarily indicates a different mechanism 

of diffusion for alkalis with respect to the local diffusion of Si or Al, which has been named 

“field diffusion” (Morgan et al., 2008). According to this mechanism, all Na and K atoms in 

melt migrate simultaneously and in coordination small distances in response to a long-range 

chemical gradient, in this case produced by addition of Al at the melt interface. Even though 

individual atoms migrate small distances, simultaneous movement of all atoms produces a 

noticeable long-range change in the concentration of Na, K and ASI values throughout the 

entire melt reservoir (see above). Thus, Fig. 9 shows that after four months of diffusive Crn 

dissolution into the melt, Al atoms coming from the Crn have migrated up to ≈700-800 µm 

away from the interface via local diffusion, whereas in the same time alkalis have migrated 

throughout the entire melt column (in this case 3 mm in length) by field diffusion. 

One important observation is that diffusion of Na during the Crn dissolution experiments is 

such that the Al/Na molar ratio is maintained constant throughout the entire melt reservoir 

(varying between 3-6 mm in length) at all experimental run times, from 12 hours to 4 months 

(Fig. 9, and Fig. 7 of Acosta-Vigil et al., 2002). This means that (i) diffusion of Na seems 

apparently instantaneous even at experimental time frames (see below), and (ii) the 

stoichiometry of the Al-eigenvector (i.e. proportions of Al, Na and K diffusing together) is 

such that its Al/Na molar ratio is similar to that of the bulk melt. In addition, some 

experiments have also shown that the proportion of K in the Al-eigenvector is such that the 
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ASI of this diffusing species is equal to the equilibrium ASI of the melt at the investigated P-

T-X conditions (Fig. 8 of Acosta-Vigil et al., 2002; Figs. 2, 3 of Morgan et al., 2008). 

3.2.4. Diffusion of H 

Alkalis are also strongly coupled with the diffusion of H in haplogranitic melt. A 

combination of H, Na and K constitutes another direction of uncoupled diffusion in the 

system (H-eigenvector; Acosta-Vigil et al., 2005). Hence, in order to homogenize H in melt, 

Na and K diffuse concomitantly with H. Because H concentration gradients in melt are 

rapidly erased, the diffusivity along the H-eigenvector must be several orders of magnitude 

faster than along the Si- or Al-eigenvectors. Nevertheless, Acosta-Vigil et al. (2005) were 

only able to provide an EBDC of ≈4 x 10
-11

 m
2
/s at 800 ºC, 0.2 GPa and ≈5 wt% H2O in melt, 

along the compositional direction H2O–dry haplogranite. The strong coupling of alkalis with 

the diffusion of H is shown in Fig. 10, recording concentration profiles in melt during the 

progressive experimental hydration-melting of dry haplogranite glass. The interface melt 

becomes quickly saturated in H; the H migrates by local diffusion and reaches saturation 

values progressively away from the interface, in response to the local H concentration 

gradients produced at the interface during hydration. Concomitantly, Na increases at the 

interface (with respect to concentrations in the starting glass) and, hence, diffuses against its 

own concentration gradient towards the hydrated domain in order to couple with H entering 

the melt. Simultaneously, there is also a decrease in the concentration of K in the hydrated 

domain, which diffuses uphill and away from the hydration volume. In this case, the 

migration of alkalis takes place by local diffusion in response to local concentration gradients 

of H; this is shown by alkali concentrations at the center of the glass cylinder in the short time 

experiments (where H has not arrived), which are similar to those in the starting material. In 

addition, the diffusion of Na and K is such that the ASI of melt stays constant at all times 

throughout the diffusion volume, i.e. each atom of K leaving the hydration zone is replaced by 

one atom of Na entering the hydration volume. Note, however, that in this case molar Al/Na is 

not maintained constant throughout the melt reservoir, as in the case of diffusion along the Al-

eigenvector. Aluminum and Si are not involved in the H-eigenvector, as indicated by constant 

Si/Al ratios throughout the entire melt, similar to those in the starting haplogranitic glass. 

3.2.5. Sodium, potassium and field diffusion 

From the previous results it is clear that Na and K are strongly coupled with (i.e. assist) the 

diffusion of Al and H, and that they can diffuse as fast as any other component in the system. 

The experimental diffusion program reviewed in this contribution has always produced alkali 
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migration in response to diffusion coupling with Al and H, i.e. in response to concentration 

gradients of Al and H in the melt, and not to concentration gradients in K and Na. However, 

results suggest that Na and K may represent two other directions of uncoupled diffusion (Na-, 

K-eigenvectors) in haplogranitic melt, with diffusivities similar to, or higher than, ≈10
-8

-10
-9

 

m
2
/s (Acosta-Vigil et al., 2006b, 2012a; Morgan et al., 2008, under review). 

To gain information on the diffusivities of alkalis in haplogranitic melt, Morgan et al. 

(2008) conducted diffusion experiments using diffusion couples where they established an 

instantaneous and long-range (extending across the entire melt reservoir or couple, ≈1 cm in 

length) driving force for the diffusion of Na and K. Thus, based on previous results (see 

above), they juxtaposed two haplogranitic melts with similar composition [concentrations of 

Na, K, and #K values; #K=mol. (K2O/(K2O+Na2O)] except for the concentration of Al and 

hence ASI (and Si), entailing an instantaneous Al concentration profile from the very 

beginning of the experiment (Fig. 11; see also Figs. 2, 3 of Morgan et al., 2008). Experiments 

lasted from zero hours to six days; during this time frame, Si and Al effectively did not 

diffuse due to their low diffusivities (≈10
-15

-10
-14

 m
2
/s) and very short experimental times, 

except for the longest duration runs where they migrated (by local diffusion) up to ≈100 

micrometers in the vicinity of the interface (Fig. 11; Si and Al concentrations and Al/Si molar 

ratio are similar to those in the starting glasses). Conversely, alkalis diffused extremely 

quickly. For instance, during the 0-hr experiment — the couple was heated up to the target T 

and, right after this T was reached, quickly quenched; this took about 30 minutes, see Fig. 1 of 

Morgan et al., 2008 — some diffusion of alkalis had already taken place, as shown by Al/Na, 

Al/K and ASI profiles at the interface (Fig. 11). 

As in the Crn dissolution experiments (Figs. 7, 9), alkalis diffused rapidly via field 

diffusion throughout the entire length of the melt reservoir, as shown by noticeable changes in 

ASI, Al/Na and Al/K at the far ends of the couple (with respect to values in the starting 

materials) in the 6-hour run. After 24 hrs, the Al/Na ratio and ASI are nominally constant 

throughout the entire 1 cm-long reservoir. These experiments confirm the results of previous 

Crn dissolution experiments on the stoichiometry of the Al-eigenvector (with an Al/Na ratio 

similar to that of bulk melt, and ASI equal to that of melt at equilibrium) and, at the same 

time, provide two insights. (i) The diffusion of alkalis is not instantaneous (at least regarding 

experimental time frames) as suggested by previous experiments: although it happens at very 

fast rates, it takes a few hours to erase the Al/Na molar ratio throughout the entire melt. (ii) 

When all excess Al at the corresponding P-T-X conditions is entirely dissolved in the melt (as 

opposed to being progressively incorporated e.g. during dissolution of Crn into a Crn-
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undersaturated melt), the diffusion properties of wet haplogranitic melts — and in particular 

the stoichiometry of the Al-diffusing species — are such that the ASI of the melt is 

instantaneously homogenized (at geologic and nearly experimental time frames) throughout 

the entire interconnected melt reservoir, as in the case of the Al/Na molar ratio (Fig. 11; and 

Fig. 3 of Morgan et al., 2008). We stress that these observations regarding the redistribution 

of alkalis (as well as the rest of melt components described in previous experiments), are 

based on time series experiments were diffusion was the only mass transport mechanism in 

the melt. That is, flow of melt did not occur as shown, among other things, by the regular 

concentrations profiles obtained in all the experiments (see for more details Acosta-Vigil et 

al., 2002, 2006; Morgan et al., 2008). 

The stoichiometry of the Al-diffusing component, combined with the mechanism of field 

diffusion for alkalis, have at least two direct applications in studies of crustal anatexis. (1) 

These diffusion systematics imply that physically interconnected melt in a migmatite can 

change its composition simultaneously and instantaneously, independently of the size of the 

interconnected melt reservoir. As an example, see in Fig. 12 how the ASI of a metaluminous 

(ASI≈1.0) melt increases at the interface with a diffusively dissolving Ab, during an Ab-melt-

Crn sandwich dissolution experiment, before any of the slow-diffusing Al coming from the 

diffusive dissolution of Crn has arrived at the Ab-melt interface (see also Figs. 7, 12 of 

Acosta-Vigil et al., 2006b). This is because, although Ab has an ASI≈1.0, Crn is dissolving 

into the metaluminous melt at the other end of the reservoir, progressively increasing the melt 

ASI at the Crn-melt interface up to the equilibrium value with Crn at those P-T-X conditions 

(ASI≈1.20, Acosta-Vigil et al., 2003). This causes the ASI of the Al-diffusing species 

migrating through the melt to homogenize Al, e.g. away from the dissolving Ab, to be ≈1.20, 

and hence produces an instantaneous increase in ASI at the Ab-melt interface from the very 

onset of Ab dissolution. For comparison, when a single crystal of Ab dissolves into a 

metaluminous melt at similar P-T-X-time conditions, the interface melt has an ASI≈1.0, which 

is the equilibrium ASI of melt under those P-T-X values (see Fig. 5 of Acosta-Vigil et al., 

2006b). (2) The Al/Na and ASI molar ratios constitute proxies for melt interconnection 

because, if the following two conditions hold, they will become instantaneously constant 

throughout a melt reservoir. (i) Al concentration gradients must be present in the melt, in 

order to trigger Al diffusion and the coupled diffusion of Na to produce constant Al/Na ratios. 

In most cases it seems reasonable that Al gradients will exist in the melt, e.g. Al increasing 

towards dissolving feldspars and/or peraluminous minerals, and/or decreasing towards Qtz. 

(ii) All excess Al in melt at equilibrium with the residue must be rapidly transferred into the 
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melt during the melting reaction, as opposed to being slowly incorporated by dissolution of 

the residual peraluminous minerals, e.g. Ms, Bt or Sil (see the constant ASI throughout the 

entire melt reservoir after only 24 hours, Fig. 11); this second condition might be more 

difficult to meet. 

4. Limitations on the applicability of the experimental observations to natural scenarios  

Transferring experimental observations to the study of processes in Nature is not trivial. 

Below we discuss how variations in the conditions of the system (pressure, activity of H2O 

and presence of differential stress), spatial scale (size and nature of the starting material) and, 

most importantly, time scale of anatexis (directly related to the rate of heat supply), affect the 

previous observations and conclusions and their application to natural scenarios.  

4.1. Melting conditions: pressure, activity of H2O in melt and presence of differential stress 

Pressure seems to have a small influence on the diffusivities of components in granitic 

melts: Baker (1990) showed that diffusivities in dacitic and rhyolitic melts increase by a 

factor of 4 going from atmospheric pressure to 1.0 GPa (at 1300ºC). Hence previously 

calculated time frames, based on diffusivities at 0.2 GPa H2O, can reasonably apply to 

anatexis in the middle and lower continental crust as well. 

The activity of H2O has a strong influence on melt diffusivities, as they vary by one order 

of magnitude for every ≈3 wt% H2O in the melt (Baker, 1991; Watson and Baker, 1991). 

Slower diffusivities associated with a decrease of aH2O in melt imply longer time frames for 

melting (in the case of diffusion in melt-controlled melting) and melt homogenization, and 

this effect needs to be assessed by investigating diffusivities in melt and kinetics of melting at 

low H2O activities. Hence our estimations of melt homogenization timeframes (Fig. 6) 

represent minimum values; considering H2O concentrations of ≈3 wt% in crustal melts 

generated by H2O-absent hydrate-breakdown anatexis in the middle and lower continental 

crust (e.g. Holtz et al., 2001), the above time frames would increase by approximately one 

order of magnitude. In addition, recent studies have shown that regional anatexis under H2O-

present conditions might be much more frequent than previously thought (Sawyer, 2010; 

Weinberg and Hasalovà, 2015; Carvalho et al., 2016; and references therein); in these cases, 

the above time frames based on diffusivities in H2O-saturated melts could be directly 

applicable (for the particular cases of H2O-saturated melting). 

Saturation in H2O may also have an effect on melt distribution, as H2O may migrate along 

grain boundaries throughout the rock, transport granite components such as alkalis, and 
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produce melting where the local assemblage is not eutectic, e.g. along Pl-Kfs, Qtz-Qtz 

boundaries. In this regard, Brearley and Rubie (1990) partially melted muscovite schist 

cylinders both under H2O-saturated and H2O-undersaturated (no added H2O) conditions, and 

found in both cases that melt formed narrow rims in between reactants throughout the entire 

cores from the beginning of melting, apparently constituting a grain boundary network. In 

addition, H2O-absent partial melting experiments of pelites indicate that, even under 

hydrostatic conditions, muscovite melting reactions can create a transient permeability and 

interconnection of the melt phase that may promote melt segregation (Rushmer, 2001). These 

observations suggest that excess H2O does not have any influence on melt distributions during 

the experimental melting of rock cylinders, though this matter needs further investigation.  

Field and experimental studies have shown that partial melting under differential stress 

produces a tendency for melt to temporarily wet grain boundaries and achieve melt 

interconnection (Jin et al. 1994; Rushmer, 1995; Rutter and Neumann 1995; Rosenberg and 

Riller, 2000; Sawyer, 2001; Holyoke and Rushmer 2002; Holness, 2010). Mechanical mixing 

during deformation and melt segregation/extraction, on the other hand, decreases melting and 

homogenization times, particularly when melting is diffusion-controlled, because it 

"refreshes" the melt composition in contact with dissolving minerals (increasing the rate of 

melting) and increases the chemical homogeneity of melt (e.g. Watson, 1982). This 

phenomenon, though, is difficult to quantify and is beyond the scope of this work.  

4.2. Spatial scale: size and nature of the starting material 

The experimental program reviewed in this article was designed to explore the kinetics of 

melting/dissolving crustal minerals and systematics of diffusion in granite melts, by 

progressively increasing the complexity of the experimental design, going from single-

mineral dissolution experiments and glass hydration/melting experiments, to two-mineral 

(sandwich) dissolution experiments, to the melting of natural rock cores. The latter 

experiments showed the same systematics of diffusion in granite melt found in the simpler 

mineral dissolution experiments. Most importantly, they replicate anatexis in nature much 

more closely than other experiments where the starting materials are fine-grained mineral 

mixtures. This is because the composition, grain shape and size, and mineral distributions and 

microstructural relationships in the starting material are exactly those of a crustal protolith. 

Thus, the melt distribution observed in the experiments can be scaled up to natural rocks 

without extrapolation, because of the large size of the rock cylinder with respect to the 

average mineral grain size. 
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4.3. Time scale: rate of heating-limited crustal anatexis  

Observations on the controls on, and time frames of, melting, melt composition, melt 

homogenization and melt-residue equilibration described above (section 3) apply to examples 

of anatexis where the heat supply is transiently infinite, such as to overstep the melting 

reaction to a certain degree — i.e. to rapidly impose and temporarily maintain T at a value 

above that of the equilibrium melting T (at a given P). This applies directly to contact 

anatectic settings, associated e.g. with the intrusion of mantle magmas (e.g. Holness et al., 

2005). The latter, however, might be an uncommon scenario for the generation of voluminous 

granitic magmas in the continental crust, which has been traditionally thought to be associated 

with regional anatexis under H2O-undersaturated conditions, via H2O-absent hydrate-

breakdown melting reactions (Stevens and Clemens, 1993; Clemens and Watkins, 2001); 

these conditions seem to be typical of continental collision settings. However, there are at 

least two important tectonic/geologic settings regarding the generation and differentiation of 

continental crust, where regional anatexis associated with a transiently infinite supply of heat 

can definitely occur, and hence the above conclusions are applicable: (i) in subduction and 

rifting scenarios during the intraplating of mantle magmas (Annen and Sparks, 2002; Dufek 

and Bergantz, 2005; Annen et al., 2006); and (ii) during the rapid influx of H2O-rich fluids in 

rocks that were already well above their wet solidus, such as major regional-scale scale shear 

zones (Brown, 2010; Sawyer, 2010; Weinberg and Hasalovà, 2015; Carvalho et al., 2016). 

During regional anatexis in collisional settings via H2O-absent hydrate-breakdown melting 

reactions, the rate of heat supply is much slower than in contact anatectic settings, and heat 

supply is considered to be the rate-limiting process in the generation of melt; the rate of melt 

generation will be ultimately controlled by the interplay between the rate of heating, the heat 

capacity and thermal diffusivity of rocks, and the latent heat of melting (e.g. Rubie and 

Brearley, 1990; Harris et al., 2000; Brown, 2010). Calculations indicate that, in cases where 

the heat consumption during endothermic melting reactions buffer T at the equilibrium 

melting temperature, generation of significant proportions of melt fractions may require 

hundreds of thousands of years or even several millions years (Hodges et al., 1988; De Yoreo 

et al., 1989; Rubie and Brearley, 1990; Stüwe, 1995). Hence, a common view is that the 

approach to the solidus and melting in these regional settings occurs at exceedingly slow 

rates, at or close to equilibrium. To date, however, there are no estimates of the time scales 

required to achieve textural equilibration during anatexis (Holness, 2010). Also, although 

migmatites are solidified rocks that have lost the original melt bearing microstructures, 
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detailed studies of regional metamorphic migmatites find disequilibrium, reaction-controlled 

melt distribution (Holness and Sawyer, 2008) and, in general, textural disequilibrium seems to 

be the rule rather than the exception (Holness, 2010). In addition, case studies on the 

geochemistry of regional migmatites in collisional orogens frequently describe disequilibrium 

melting regarding trace trace element concentrations in melt, associated with rapid melt 

segregation (e.g. Barbey et al., 1989; Bea, 1991; Watt and Harley, 1993; Barbero et al., 1995). 

This, in turn, indicates rapid melting and melt interconnection. Hence, (i) slow rates of 

heating in collisional settings do not necessarily imply that anatexis proceeds at slow rates and 

under textural and/or chemical equilibrium, and (ii) the nature of melt distribution, and 

controls on melting rate, melt composition and extent of melt-residue equilibrium in this 

environment are not clear and further detailed studies are required. Current studies on 

migmatites (see above), nevertheless, suggest that these characteristics might approach those 

described during the granite core melting experiments, particularly at low degrees of 

overstepping, i.e. rapid melt interconnection, disequilibrium melt distributions and 

compositions, lack of residue recrystallization, and long time frames for melt-residue 

equilibration. 

Some experimental studies and numerical modeling by Rubie and Brearley (1990) and 

Rubie (1998) indicate that, even in cases of regional anatexis where overall the rate of heat 

supply constitutes the rate-limiting process, there can be an initial period where, due to the 

kinetics of melting (e.g. the sluggish nucleation of products during peritectic melting 

reactions), a large T overstep is possible. And, associated with this overstepping, a large 

amount of melt can be produced in a very short time interval, during which the rate of melting 

is controlled by the kinetics of the melting process (interface reactions, diffusivities in melt). 

For instance, these authors calculated that an overstep of 20-100 ºC would produce 20-50 % 

of melt in 0.2-1 year. In these situations, melting rates, melt compositions and time frames for 

melt homogenization and melt-residue equilibration can be similar to those described during 

experimental melting at different degrees of overstepping, e.g. at high degrees of overstepping 

we should expect rapid melt interconnection, initially heterogeneneous disequilibrium 

compositions, extensive rerystallization of residue, and short time frames for melt-residue 

equilibration. 

Comparison of the above experimental results (section 3) with the analyzed compositions 

of primary melts in natural scenarios — and in particular, of MI — as well as with 

compositions and homogeneity of residual minerals — for example, Pl — may provide clues 
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to the nature and mechanisms of anatexis in natural environments. This is discussed in the 

next section. 

5. Nature of primary melt compositions during crustal anatexis 

5.1 How do we obtain the composition of primary anatectic melt? 

The field, petrological and geochemical analysis of migmatites provides a first, necessary 

and important approach to the study of primary crustal melt compositions, particularly when 

systematic geochemical investigations are conducted throughout the anatectic terrane, in order 

to understand the processes active during partial melting (e.g. Sawyer, 1998, 1999; Carvalho 

et al., 2016). However, leucosomes may not provide precise information on primary melt 

compositions, because (i) they are thought to constitute parts of a macroscopic network along 

which melt is either drained from the studied terrane, and/or transferred from deeper to upper 

crustal levels (e.g. Sawyer, 2001; Brown, 2013); and ii) primary melts are commonly affected 

by/associated with phenomena such as entrainment of residue and, upon cooling, fractional 

crystallization and separation of melt from minerals, interaction with the residue and 

crystallization with H2O loss (e.g. Sawyer 1999, 2008; White and Powell, 2010; Brown, 2013; 

Carvalho et al., 2016). 

To obtain further information on primary melt compositions and processes during anatexis, 

leucosome compositions are commonly compared with experimental glass compositions 

produced during partial melting of crustal protoliths at P-T-X conditions similar or close to 

those inferred for the anatectic terrane (e.g. Solar and Brown, 2001; Morfin et al., 2014; 

Carvalho et al., 2016). Although it provides a wealth of information, this approximation may 

also have some drawbacks: (i) there may be differences in bulk rock composition and P-T of 

melting between studied and experimentally melted rocks (Bartoli et al., 2013c; Cesare et al., 

2015); and (ii) this approach commonly ignores the kinetics of crustal melting. For instance, 

starting materials in the experimental studies are commonly powdered rocks, and 

experimental glass is thought to represent the composition of melt at equilibrium with the 

residue at the investigated P-T conditions. However, compositional zonation in major 

minerals of anatectic terranes controlling both major and trace element compositions of melts 

(e.g. Pl, Grt) is ubiquitous. In fact, many geochemical studies in anatectic terranes have found 

that, based on the trace element concentrations of leucosomes, melts were not at equilibrium 

with their residue (e.g. Barbey et al., 1989; Bea, 1991; Sawyer, 1991; Watt and Harley, 1993; 

Barbero et al., 1995; Watt et al., 1996). In addition, and based on kinetic considerations, Bea 
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(1996) concluded that chemical equilibrium during anatexis is the exception rather than the 

rule, at least regarding the distribution of trace elements between melt and residue. Hence, 

why should we assume mineral-melt major element equilibrium distributions during anatexis? 

Some of the drawbacks regarding the study of the compositions of primary crustal melts, 

through the approximations of leucosomes in anatectic terranes and glasses in experimental 

studies, can be overcome with the study of MI. Two decades ago, primary MI were 

discovered in crustal anatectic rocks, first in enclaves within peraluminous dacites — where 

MI have solidified to glass upon rapid ascent and extrusion — (Cesare et al., 1997), and later 

on in crustal anatectic terranes — where MI commonly crystallize to a granitoid assemblage 

with grain size ≤1 µm, and hence have been termed nanogranites or nanogranitoids — 

(Cesare et al., 2009, 2015). Their mode of entrapment guarantees that these MI represent 

primary anatectic melts present in the rock during growth of their host peritectic minerals 

(Cesare et al., 2011, 2015; Bartoli et al., 2014). In addition, recent studies have shown that MI 

are commonly present in anatectic terranes (Cesare et al. 2009, 2011, 2015; Ferrero et al., 

2012; Bartoli et al., 2016a). Primary melt inclusions have also been described in UHP 

gneisses and eclogites associated with the subduction of continental crust (Hwang et al., 2001; 

Stöckhert et al., 2001; Korsakov and Hermann, 2006; Frezzotti and Ferrando, 2015; and 

references therein), where they have been called melt inclusions, multiphase inclusions or 

polyphase inclusions, and have been interpreted as former melt or dense supercritical fluids. 

This new approach, however, may also involve some potential weaknesses that need to be 

explored. Even though Bartoli et al. (2013b; see also references therein) have developed an 

appropriate methodology to rehomogenize nanogranitoids in order to extract their precise 

composition, there is still uncertainty over how representative MI are of the bulk melt present 

in the rock at the time of entrapment. This, in turn, translates into uncertainty about the 

meaning of their compositions, or what kind of information they provide about anatectic 

processes (see also Cesare et al., 2015). These doubts are due to at least two reasons. One is 

associated with the fact that the analysis of MI in anatectic rocks represents a new approach to 

the study of anatexis that is currently being developed, as more MI analyses from different 

anatectic terranes worldwide become available a clearer picture will emerge (Cesare et al., 

2015; Bartoli et al., 2016a). The other is directly related to the lack of abundant and/or fully 

described information in the literature on how primary crustal anatectic melts are established, 

and what are the main factors governing their compositions. This article is intended to fill this 

gap and provide a reference frame (sections 2 to 4) from the melting experiments to which 

the composition of MI can be compared in order to extract the information that MI contain on 
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the process of anatexis. After some consideration on the meaning of MI compositions (section 

5.2), we test this reference frame with the currently published compositional information of 

glassy MI from the El Hoyazo anatectic enclaves (section 5.3) and nanogranitoids in regional 

migmatites and granulites around the world (section 5.4). 

5.2 Interpretation of the compositions of melt inclusions 

Cesare et al. (2011, 2015) and Bartoli et al. (2014) have shown that, because MI in 

anatectic rocks are trapped within peritectic minerals formed concomitantly with the melt, 

their compositions must correspond to those of primary anatectic melts, i.e. those produced 

during the anatexis of the rock. In addition, this mode of generation entails that MI should 

likely record melts produced in situ, as opposed to melts flowing along grain boundaries; that 

is why comparing their compositions with the reference frame laid out above (sections 2-4) 

may provide information on the controls on primary melt compositions before segregation. 

Some of the retrieved characteristics may represent minimum values (e.g. degree of melt 

homogeneity or melt-residue equilibration), as once MI are trapped they will not likely 

interact any more with the rock matrix (see Bartoli et al., 2014). Nevertheless, what is the 

precise meaning of the composition of MI, and what are they telling us about the melting 

process? There are two extreme scenarios. On the one hand, they may represent (i) a 

homogeneous melt present in the migmatite at the time of entrapment. On the other hand they 

may record (ii) a melt that is heterogeneous for different reasons; one of these is that they 

might record melts produced at different times along the prograde path or during different 

anatectic events (e.g. Acosta-Vigil et al., 2010, 2016; Bartoli et al., 2015). And this is the 

basis for MI representing a window of information into the (prograde or polyphase) anatectic 

history of a migmatite (Acosta-Vigil et al., 2010, 2016). Hence, when studying MI 

compositions it is important to couple compositional and microstructural observations, i.e. we 

must specify in what mineral or mineral domain the analyzed MI was present, and to which 

mineral association/assemblage in the rock does this microstructural domain belong (Cesare et 

al., 2011, 2015; Ferrero et al., 2012). 

If MI compositions are homogeneous, then they may represent (i.a) melt at equilibrium 

with the residue, either the bulk residue (case i.a1: coexisting minerals are homogeneous and 

show major and trace element equilibrium partitioning with respect to the MI), or just with the 

rims of minerals (case i.a2: coexisting minerals are heterogeneous and show equilibrium 

partitioning distributions only at the contact with MI); or (i.b) a homogeneous disequilibrium 

melt, where melting is controlled by the kinetics of the interface reactions (see section 3.1.1).  
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When the composition of MI found within a mineral or minerals pertaining to a single 

assemblage in the rock (i.e. MI formed at the same time) are heterogeneous, there are 

essentially three possible interpretations. (ii.a) MI compositions are locally controlled by the 

kinetics and interplay of processes acting in the vicinity of mineral host-melt interfaces, which 

include boundary layer phenomena and enrichment of elements in the surface layer of rapidly 

growing crystals (e.g. Albarade and Bottinga, 1972; Watson, 1996; Baker, 2008). In this case 

their applicability to the study of crustal anatexis might be limited, as fractionation among 

major and trace elements at the interface melt region — controlled by the interplay between 

mineral growth, melt diffusivities, element compatibility with the growing mineral and 

disequilibrium mineral-melt partitioning — could modify to a large extent the composition of 

the bulk melt present in the migmatite. The few currently available studies have concluded 

that the kinetics of processes acting at interfaces do not modify the original major element and 

incompatible (with respect to the mineral hosts) trace element concentrations of melt trapped 

as MI in migmatites; they may influence, however, the concentrations of the compatible trace 

elements, that may show disequilibrium distributions and enrichment in the surface layer of 

the rapidly growing host (Acosta-Vigil et al., 2010, 2012b; Cesare et al., 2015; Bartoli et al., 

2016a). This issue is important and requires further and detailed examination as more case 

studies of MI become available. (ii.b) Even if during entrapment MI were recording matrix 

melt compositions unaffected by processes acting at interfaces, they would be modified later 

by post-entrapment processes, such as dissolution or crystallization of the host, crystallization 

of daughter minerals, and H2O loss (e.g. Roedder, 1984). This will again limit the 

applicability of MI to the study of crustal anatexis, though currently available studies suggest 

that these processes do not significantly affect MI compositions in migmatites (Cesare et al., 

2015). These two first possibilities can be examined using the geochemical procedures 

described in the extensive studies of MI present in phenocrysts of volcanic rocks (e.g. 

Roedder, 1984; Kent, 2008; Audétat and Lowenstern, 2013; and references therein). (ii.c) MI 

may document melts whose compositions are locally controlled by the nature of neighboring 

reactants contributing to the melt ± residual minerals (e.g. Clemens, 2009); these melts, 

however, are representative of those particular domains of the rock. In addition, if melt is 

interconnected and if the time interval between generation and entrapment allows, these local 

compositions will necessarily evolve with time towards a homogeneous melt, according to the 

systematics of diffusion in melt (section 3.2), ending in cases (i.a1), (i.a2) or (i.b) as a 

function of the extent of melt-residue equilibration. 
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All scenarios except (ii.a) and (ii.b), are exactly equivalent to those simulated in the 

kinetics experiments described above that explore the processes that control the mechanisms 

and timing of anatexis (section 3). In these cases, melt composition at a given time and 

location in the rock is determined by the interplay between the kinetics of the interface 

reactions, the kinetics and systematics of diffusion in melt and minerals, the possibility of 

mineral recrystallization, and the time available between melt generation and MI entrapment 

(Fig. 4). In these scenarios (i.e. once we are sure that MI compositions do not correspond to 

cases ii.a or ii.b), therefore, the study of MI and coexisting minerals, and comparison with 

experimental results from kinetics and equilibrium studies on anatexis, constitutes a 

tremendously useful tool to investigate the partial melting of the continental crust. 

From the above it is clear that MI can provide information not only on the compositions of 

primary melts (i.e. those produced during the process of partial melting; Cesare et al., 2011, 

2015; Bartoli et al., 2014), but also on the nature and mechanisms of anatexis in a particular 

rock and geodynamic setting. This includes the extent to which melt was homogeneous, 

interconnected and at equilibrium with the residue before entrapment, and hence information 

on the roles of diffusion in melt, interface reaction and mineral recrystallization during 

melting and, possibly, on the occurrence/extent of overstepping. Melt inclusions also provide 

information on the nature of melting reactions and fluid regimes (see Acosta-Vigil et al., 

2010, 2012; Bartoli et al, 2014; Cesare et al., 2015). All this information can be gained by 

comparing MI and coexisting mineral compositions gathered from a particular migmatite, 

with published data both on the equilibrium melting and melting kinetics of systems that are 

(closely) similar in composition to the investigated rock. This includes major element 

equilibrium melt compositions (e.g. eutectics), mineral-melt trace element equilibrium 

distribution coefficients, accessory mineral saturation concentrations of trace elements in melt 

(e.g. Zr and LREE concentrations in Zrn and Mnz saturated melts, respectively), and 

information on mechanisms and kinetics of melting such as that shown in section 3 (e.g. 

role/interaction of processes occurring during anatexis, and systematics of diffusion in melt). 

From the previous discussion it is clear also, and we stress that, if MI compositions are not 

homogeneous and/or at equilibrium with the residue, this does not mean either that MI are not 

recording primary melts, or that they are not representative of the melt present in the 

migmatite during entrapment, or that they provide just local, unrepresentative and useless 

information. It only means that they record the anatectic environments where they form, and 

processes happening in a particular part of the migmatite during anatexis, as leucosome 
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compositions may record anatexis at disequilibrium, or fractional crystallization of melt upon 

cooling. 

Kinetics data are quite important, as for instance during diffusion-controlled melting, the 

nature of the progressive homogenization among local melts within the minimum volume for 

equilibrium depends on the systematics of diffusion. Thus, considering only diffusivities, one 

would expect fast-diffusing components — e.g. Na, K, H — to homogenize concentrations in 

melt much faster than slow-diffusing components — e.g. Si, Al. However, this is not true 

when fast diffusing components are coupled with the diffusion of slow diffusing components, 

as in the strong coupling of Na and K with Al through the Al-eigenvector. In this case, 

concentration gradients of alkalis in melt may be present and persist until those in Al are 

erased through diffusion along the Al-eigenvector. Also, and regarding directions of 

uncoupled diffusion, Al/Na ratios, or even ASI under certain circumstances (see above), are 

expected to homogenize almost instantaneously throughout all interconnected melt, whereas 

Si and Al concentrations and Al/Si molar ratios will take a long time to do so. That is why 

Al/Na and ASI ratios can potentially be used as proxies for melt interconnectivity. Figure 13 

schematically illustrates scenario (ii.c) during the particular case of H2O-absent Bt-

dehydration melting, and provides expected concentration profiles in the melt in between 

residual and peritectic minerals, based on the previously described diffusion systematics of 

granite melts. 

In order to interpret the significance of MI compositions analyzed in a particular anatectic 

rock, one should ideally obtain the following information. (i) As in any other geochemical 

study, a relatively large number of high quality and microstructurally controlled MI analyses. 

(ii) When MI are only present within a single mineral of a single-protolith migmatite, analyze 

MI within several crystals of that mineral in a few thin sections made from different rock 

chips/hand specimens of the outcrop; this will help evaluating the degree of melt homogeneity 

at the mm-cm-dm scale and contrast results with the estimated minimum volume for 

equilibrium. (iii) When MI are present within several minerals pertaining to different mineral 

assemblages, or in different microstructural locations of a single mineral grown during the 

suprasolidus evolution of the rock (e.g. Grt cores versus Grt rims), then investigation of MI 

compositions throughout these different microstructural locations — if abundance, 

presevation and size of MI allow — may provide information on the (prograde, polyphase) 

anatectic history of the rock. (iv) When matrix melt (glass) is present, such as in enclaves of 

regional anatectic migmatites within lavas, analyses of matrix glass may help determine the 

extent to which syn- and post-entrapment processes (e.g. boundary layer phenomena) control 
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the compositions of MI. (v) In the case of migmatites formed from heterogeneous protoliths, 

analysis of MI within minerals of the several protoliths, if available, may provide some 

information on the (maximum?) extent of melt heterogeneity expected to be inherited from 

the source region, in addition to that associated with the incomplete homogenization of melt 

formed from single-protolith migmatites due to sluggish diffusion; this information can be 

compared with results from studies of intrusive granitoids proposing this process as important 

in shaping bulk rock geochemistry (e.g. Clemens and Benn, 2010) (vi) Major and trace 

element compositions of minerals coexisting with the MI (both hosting MI and MI-free 

minerals) should be obtained in order to evaluate the extent of melt-residue equilibration 

during anatexis (see also Acosta-Vigil et al., 2010, 2012b, 2016). 

5.3 Information from MI in anatectic enclaves: the example of El Hoyazo 

Strongly peraluminous, ≈6 Ma old post-orogenic dacites of El Hoyazo (Betic Cordillera, S 

Spain) are crowded with foliated metasedimentary anatectic enclaves that have residual 

compositions, suggesting loss of ≈30-60 wt% of a granite melt component. The enclaves still 

have ≈10 wt% of melt present as abundant primary MI within most of the minerals (Pl, Grt, 

Bt, Crd, Kfs, Ilm, Spl, Ap, Mnz, Zrn) and in the matrix as films of glass along foliation planes 

and surrounding minerals. Melt was produced mostly in a regional setting before 

incorporation within the magma, and solidified to glass due to rapid cooling upon ascent and 

extrusion. This is inferred from microstructures documenting syn-anatectic deformation, 

presence of MI-bearing minerals wrapped by the main foliation, and the residual nature of 

enclaves indicating melt loss. These observations are difficult to explain if melting was after 

incorporation in the magma. These enclaves, therefore, represent a snapshot of anatexis in the 

middle-to-lower continental crust (see below), frozen due to ascent and extrusion within the 

dacite, where melt and residue can be readily identified and analyzed (Zeck, 1992; Cesare et 

al., 1997, 2015; Cesare and Gómez-Pugnaire, 2001; Zeck and Williams, 2002; Acosta-Vigil et 

al., 2010). 

Cesare and Maineri (1999) noticed that MI are present within both reactants and products 

of typical melting reactions in metasedimentary protoliths. They hypothesized that this is due 

to the (re-)crystallization of all minerals in the presence of melt, during the process of rapid 

disequilibrium melting of a low-grade phyllite, which equilibrated mineralogically to 

granulite facies conditions, possibly by-passing most amphibolite facies reactions. They 

proposed the following melting reaction: 

Chl+Ms+Qtz Ilm+GCOH fluid (±St±Kfs±Ky) = Grt+Pl+Sil+Bt+melt+Gr, 
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where “GCOH fluid” stands for a mixture of H2O, CO2, CH4, CO and H2, and noticed that the 

reaction products appear equilibrated from a mineralogical and compositional point of view. 

The term “disequilibrium melting” was likely used to stress the presence of the original 

reactant assemblage (low-grade phyllite) outside its stability field, and the overstepping of 

most intermediate reactions between the low-grade phyllite and the granulite-facies 

migmatite.  

Plagioclase, Grt, Bt, Sil and melt have been included within the main equilibrium 

assemblage of the enclaves, for which thermobarometric calculations using Grt-Bt and Grt-Pl 

pairs obtained conditions of ≈800-850 ºC and 0.5-0.7 GPa (Cesare et al., 1997; Cesare and 

Maineri, 1999). Melt in this assemblage corresponds to the matrix glass coexisting with these 

minerals. Instead, MI located at the cores of Pl and Grt formed before matrix glass and 

represent matrix melts present in the migmatite during (re-)crystallization of these cores, and 

therefore constitute the remains of the first melts produced during anatexis of the enclaves 

that we can have access to. 

Previous studies have documented the major and trace element compositions of MI in Pl, 

MI in Grt and matrix glass, as well as the coexisting minerals, as mean concentrations and 

normative Qtz-Or-Ab-An, Harker, chondrite-normalized REE and spider diagrams (Cesare et 

al., 1997, 2011, 2015; Acosta-Vigil et al., 2007, 2010, 2012b; Cesare and Acosta-Vigil, 2011; 

Bartoli et al., 2016a). Figures 14 and 15 show the compositions of MI and matrix glass in 

enclaves as wt% CIPW normative Qtz-Or-Ab and Harker diagrams, and compare it with the 

glass produced in the granite core melting experiments at low and high degrees of T 

overstepping (sections 3.1.1 and 3.1.2). Although MI are present in virtually all minerals in 

the enclaves, ≈250 MI were mostly analyzed at the cores of Pl and Grt, as these minerals 

show abundant, well-preserved and sufficiently large MI. Analyses come from three 

petrographically similar (Grt-Bt-Sil) enclaves and several crystals of Pl and Grt in each of 

them. Matrix glasses were additionally analyzed across the entire thin sections. The relative 

position of these enclaves in the source area before incorporation into the dacite is uncertain. 

Given that the dacites constitutes a ≈1-km diameter dome crowded with enclaves, it is likely 

that analyzed enclaves were originally located at least meters to tens-hundreds of meters 

apart. Despite this, all MI show systematically peraluminous K-rich leucogranitic 

compositions similar to glass produced during the H2O-absent hydrate-breakdown 

experimental melting of metasediments (SiO2=69-76 wt%, FeOt+MgO+TiO2=0.5-2.5 wt%; 

#K=0.40-0.65; ASI=1.05-1.40, compared with e.g. Vielzeuf and Holloway, 1988). In 

addition, they plot in the vicinity of (≈0-20 wt%) H2O-undersaturated haplogranitic eutectics 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 33 

and Qtz-Or cotectic line (Fig. 14). Based on diagrams in Figs. 14 and 15, information on trace 

element concentrations in the glasses and residual minerals (Acosta-Vigil et al., 2010, 2012b), 

previous data and the discussion on the kinetics of partial melting (sections 3-5), we infer 

below some major features of the process of anatexis of these enclaves. 

In the normative Qtz-Or-Ab diagram (Fig. 14), glasses from MI show a larger 

compositional spread with respect to the mostly homogeneous experimental glasses produced 

at low degrees of T overstepping (690 ºC), and plot relatively far from the haplogranite 

eutectics. Despite this, and considering that analyses come from several enclaves and different 

Pl and Grt crystal hosts, it is remarkable that glass in each microstructural location is 

characterized by a distinct composition (Figs. 14, 15). MI in Pl have the most heterogeneous 

and incompatible element-rich compositions, showing large variations in ASI, Al/Na and #K, 

and lack of any trend in most diagrams. MI in Grt and the matrix glass show the least 

geochemically evolved and most homogeneous compositions, in particular matrix glass shows 

quite constant Al/Na ratios. The still relatively heterogeneous MI in Grt form a clear trend 

parallel to the Qtz-Ab side line, similar to those of experimental glasses produced at high 

degrees of T overstepping (800 ºC), where melting was diffusion in melt-controlled (Fig 14); 

this trend is absent from the MI in Pl, and less clear in the relatively homogeneous matrix 

glass. Assuming that MI major element concentrations were not affected either by pre- or 

post-entrapment processes (cases ii.a and ii.b, respectively, section 5.2) (Acosta-Vigil et al., in 

preparation), the above observations suggest that diffusion in melt controlled the rate of 

melting during anatexis of the enclaves, and hence that melting was associated with a large T 

overstep of the reaction (case ii.c, section 5.2; and section 3.1.2). Also, melt likely had 

progressively longer time frames for homogenization going from MI in Pl to MI in Grt (i.e. 

time between melt generation and entrapment) and to matrix glass (time between generation 

and quenching) (Fig. 14). MI in Pl seem to represent former local matrix melt that either was 

not interconnected before entrapment, or was rapidly trapped after formation; otherwise their 

Al/Na ratio would not be that heterogeneous (Fig. 15). The matrix glass and MI in Grt 

represent melts, likely interconnected, that had more time to homogenize and given the high 

diffusivities of alkalis in melt, reduced their initial spread in Al/Na (Fig. 15). Low 

diffusivities of Si and Al, however, are responsible for the spread in modal Qtz/feldspars, 

particularly of MI in Grt (Fig. 14), with higher Si in melts next to Qtz, and higher Al in those 

next to feldspars or peraluminous minerals.  

Regarding trace elements, MI in both Pl and Grt show similar ranges and mean 

concentrations for those elements incompatible with their respective hosts. This suggests that, 
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for the incompatible elements, MI (i) represent the compositions of the bulk matrix melt in the 

system at the time they were trapped, and (ii) matrix melt at this time had already a well-

defined geochemical signature, with high concentrations of incompatible elements (highest 

Li, Cs, B, U/Th; lowest V, Zr, Th, REE) and, in general, more heterogeneous compositions 

than the current matrix glass (Acosta-Vigil et al., 2010). Based on Zr and LREE 

concentrations in glasses and Zrn and Mnz saturation thermometry, Acosta-Vigil et al. (2010) 

obtained an increase in T from ≈670-700 ºC for MI in Pl, to 700-750 ºC for MI in Grt, and up 

to 810 ºC (though variable, ≈710-810 ºC) for matrix glass. They also found that MI in Pl and 

MI in Grt are rich in trace elements strongly compatible in Ms, whereas matrix glass is 

enriched in minor and trace elements that are abundant in Bt. Hence, combining geochemistry 

and Zrn/Mnz saturation thermometry, and in accordance with estimations of H2O in glass 

(H2O by difference), they interpreted the MI in Pl and Grt to represent melts formed by the 

H2O-present to H2O-absent Ms-breakdown melting, whereas matrix glass constitutes melt 

formed at the beginning of the H2O-absent Bt-breakdown melting. 

Based on the trace element concentrations of MI, matrix glass and coexisting minerals, 

Acosta-Vigil et al. (2012b) obtained the following major conclusions on mineral-melt 

equilibration. (i) Using the concept of cross-partitioning concentration ratios introduced by 

these authors, they concluded that at the time of MI entrapment the matrix melt was likely 

interconnected and at, or close to equilibrium with most coexisting minerals, including Pl, Bt, 

Kfs. It was not, however, at equilibrium with Grt. And although already loaded with 

considerable quantities of Zr, Th and LREE, matrix melt was undersaturated to some extent in 

Zrn and Mnz. (ii) Right before extrusion and quenching, matrix melt and rims of most 

coexisting minerals were at equilibrium, but the extent of equilibrium between melt and bulk 

residue was likely being controlled by diffusion in melt. Melt and the mostly homogeneous 

(hence likely re-crystallized) Pl, Bt, Kfs and Crd were at equilibrium regarding fast diffusing 

Large Ion Lithophile Elements, whereas melt and Grt, Bt, Zrn and Mnz were at disequilibrium 

with respect to the slower diffusing First Row Transition Elements and High Field Strength 

Elements. Also, melt was to some extent undersaturated in Zrn, Mnz and hence the slow 

diffusing Rare Rare Elements. (iii) The process of bulk residue-melt equilibration is complex 

and its evolution may vary depending on minerals (variable capacity of recrystallization) and 

elements (variable diffusivities in minerals and melt). Overall, however, effective mineral-

melt partition coefficients (Keff) deviated from equilibrium ones (Keq) in a different manner 

relative to that predicted by the model of Bea (1996), where Keff=1; this was likely due to big 

mineral re-crystallization contemporaneous with anatexis. (iv) Plagioclase, Bt, Kfs and Crd 
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were in general at, or close to equilibrium with coexisting melt, whereas melt and Grt were 

not at equilibrium. This is likely due to re-crystallization of the former minerals — supported 

by their mostly homogeneous compositions in major and trace elements —, and lack of 

recrystallization of Grt — supported by heterogeneous composition along electron 

microprobe traverses, see Fig. 5 of Acosta-Vigil et al., 2010). (v) The observations that melt 

was at equilibrium either with most of the bulk residue (MI) or at least rims of minerals 

(matrix melt), that most minerals are homogeneous, and that bulk residue-matrix melt 

equilibrium seems controlled by diffusion in the melt, all support the conclusions based on 

major element chemistry (Fig. 14) that melting was diffusion-in-melt-controlled, and 

associated with a large T overstep of the reaction. 

We notice that the anatectic scenario for the enclaves presented above, and obtained from 

the analysis of major and trace element concentrations of MI, matrix glass and coexiting 

minerals, is in accordance with the model proposed by Cesare and Maineri (1999) based on 

petrological (i.e. not geochemical) grounds: rapid T overstep melting and (re-)crystallization 

of a lower grade metamorphic rock. This shows the potential of this new approach. 

5.4 Information from analyzed nanogranitois (i.e. crystallized MI) in regional migmatites and 

granulites 

Figure 16 shows the Qtz-Or-Ab normative composition of all presently rehomogenized and 

analyzed nanogranitoids in migmatites and granulites, together with the experimental glasses 

produced during the granite core melting experiments and the glassy MI from El Hoyazo, for 

comparison. All nanogranitoids (≈420) are included in Grt and come from eight different 

rocks (protoliths are peraluminous metapelites and metagreywackes, and metaluminous 

orthogneisses and tonalites) collected in seven distinct anatectic terranes, that cover a variety 

of geologic/tectonic environments and P-T-aH2O conditions: ≈660-700 to >900 ºC, 0.45 to 2.7 

GPa, and H2O-present to low H2O-absent scenarios (Table 2; see for details Cesare et al., 

2015; Ferrero et al., 2015; Acosta Vigil et al., 2016; Bartoli et al., 2016a).  

In the Qtz-Or-Ab diagram, nanogranitoids plot mostly far from the haplogranite eutectics. 

They either tend to approach the degree of homogeneity shown by the experimental glasses 

produced at small degrees of overstepping (e.g. Ojén metatexites, La Galite), or show 

relatively heterogeneous compositions (e.g. OSBM, KGD, Jubrique granulites) (see also the 

discussion about MI homogeneity in Cesare et al., 2015). These more heterogeneous MI 

show, in addition, conspicuous trends with small variations in Ab/Or and large variations in 
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Qtz/feldspar ratios, parallel to trends of experimental glasses produced at high degrees of 

overstepping. 

Based on the comparison with experimental results on the kinetics of melting (section 3), 

and assuming that pre- and post-entrapment processes have not affected the major element 

composition of analyzed MI, nanogranitoids in the Ojén metatexites and La Galite may 

approach cases (i.a) or (i.b) of section 5.2. The trends shown by nanogranites from OSBM 

and, particularly KGD and the Jubrique diatexites, most likely reflect the control of diffusion 

in melt on the composition of interconnected melts (i.e. slow diffusion of Si and Al, extremely 

rapid diffusion of alkalis) [case (ii.c) of section 5.2] and, hence, may suggest anatexis 

associated with high degrees of overstepping of the melt-producing reaction (section 3.1.2). 

Further investigation on the nature of melting requires consideration of trace element data 

from MI and the coexisting minerals, and the compositional homogeneity of minerals (see 

case of El Hoyazo). In addition to the composition of the primary melts, other characteristics 

that might suggest overstepping of melting reactions in Nature are the frequently reported 

cases of rapid melt segregation in migmatites, necessarily implying rapid melting, and also 

the lack of textural equilibration; these observations seem at odds with a scenario of 

exceedingly slow melting during entirely rate of heating-controlled anatexis (see above). 

A final but quite important observation is that, despite being in some cases relatively 

heterogeneous, nanogranitoids from each investigated scenario have a distinct composition 

that reflects the particular P-T-X-aH2O conditions of the anatectic terrane, in other words the 

compositions recorded by nanogranitoids “capture” the environment of melting. For instance, 

nanogranitoids from ultra-high T rocks (KKB) approach the composition of the bulk rock 

(e.g. in Qtz-Or-Ab normative diagrams); nanogranites produced at H2O-present conditions 

(KGD, Jubrique diatexites) are peraluminous granitoids displaced towards the Qtz-Ab sideline 

(compare with Conrad et al., 1988); nanogranitoids produced at lower T and H2O-absent 

conditions plot towads the middle of the Qtz-Ab-Or diagram and closer to the haplogranitic 

eutectics, though melt composition is distinct for each specific case (see Cesare et al., 2015). 

6. Concluding remarks 

1. Together with Acosta-Vigil et al. (2010, 2012), this article establishes the basis for a 

new approach to investigate the nature, mechanisms and timing of crustal anatexis, as 

well as controls on the composition of primary melts before segregation from the solid 

fraction, during particular case studies of migmatites. This is accomplished by combining data 

on equilibrium melting, the kinetics of melting, and melt inclusions in anatectic rocks. First, 
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we use available experimental data on the kinetics of melting of crustal protoliths to provide a 

reference frame describing the processes acting during anatexis and their controls and inprint 

on melt compositions. Then, and after discussing the limitations of experiments to describe 

crustal anatexis in Nature, we test this experimental reference frame by using currently 

available analyses of primary melt inclusions in migmatites. 

2. We emphasize that, even if the composition of melt inclusions trapped at a particular 

time is not entirely homogeneous and/or at equilibrium with the residue, this does not mean 

either that melt inclusions are not recording primary melt compositions, or that they are 

not representative of the melt present in the migmatite during entrapment and useful to 

investigate anatexis in the rock — provided that they have not been affected by processes 

operating at the interface (e.g. boundary layer phenomena) or post-entrapment modifications. 

This means that melt inclusions are able to “capture” (i) the anatectic environment where they 

form, and (ii) processes occurring in that particular migmatite during partial melting. This is 

the basis for using melt inclusion compositions to study the nature, mechanisms and timing of 

melting in migmatites. 

3. Several processes may occur concomitantly during anatexis, including diffusion of heat 

through the protolith, reactions at mineral-melt interfaces, diffusion in melt and in minerals 

and recrystallization of minerals. Solid granite rock core melting experiments show that, 

during anatexis at relatively low degrees of T overstepping (≤10-60 ºC), initial melts are 

quite homogeneous, close to the haplogranite minimum/eutectics, but at disequilibrium with 

the residue, which does not recrystallize. Though melting is fast and controlled by the rates of 

reactions at interfaces, melt-residue equilibration may take an extremely long time as it is 

controlled by diffusion in minerals, e.g. tens to hundreds of millions of years for Ca-Na in Pl, 

depending on the grain size. This scenario may apply to contact anatectic settings associated 

with relatively small overstepping of the melting reaction. Current microstructural and trace 

element geochemical studies on regional migmatites, documenting frequent disequilibrium 

features, suggest that this scenario might also apply to regional anatexis in collisional settings. 

4. During melting at high degrees of T overstepping (≥100 ºC), initial melts are 

heterogeneous and at equilibrium with the residue only at the mineral-melt interfaces. 

Minerals, however, quickly recrystallize. Hence melting, melt homogenization and mineral-

residue equilibration time frames are much shorter as their rates are controlled by diffusion in 

the melt, e.g. tens of years for length scales of diffusion of ≈2 mm (associated with a 

minimum volume for equilibrium of 1 mm
3
,
 
Fig. 1b) for the case of H2O-saturated anatexis. 

This scenario applies to contact anatectic settings, which can be present in important tectonic 
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scenarios for the generation and differentiation of continental crust, such as the middle-to-

lower crust above subduction zones and in continental rifts. It also applies during the rapid 

influx of H2O-rich fluids in rocks that are already well above their wet solidus, and might 

apply during the first stages of regional anatexis in collisional orogens. 

5. Comparison between the experimental reference frame and currently available melt 

inclusion data sets indicates that, in several cases were melt inclusion compositions are 

relatively homogeneous suggests that melting occurred either as (i) disequilibrium melting 

during contact anatexis at small degrees of temperature overstepping or during rate of heating-

controlled regional anatexis; or (ii) equilibrium melting during contact anatexis at large 

degrees of temperature overstepping or during H2O-fluxed melting of rocks well above their 

solidus, with enough time for melt-residue equilibration to occur between melt generation and 

entrapment as MI. Trace element studies on minerals are necessary to further 

confirm/investigate the nature of melting. In several cases melt inclusions are more 

heterogeneous and their compositions were likely controlled by diffusion in the melt, 

suggesting that melting occurred associated with a large temperature overstepping of the 

reaction. 
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Figure captions 

Figure 1. (a) Schematic representation of a granitic migmatite neosome (melt is shown as the 

pink interconnected network), showing melt segregation during flow along grain 

boundaries, due to pressure gradients developed under the effect of differential stress on 

heterogeneous rocks. Length scales of melt segregation vary from ≈0.5-5 mm during 

generation of microleucosomes, to a few/tens of cm (?) during genesis of in situ 

macroscopic leucosomes [based on Sawyer et al. (2001) and Sawyer (2008, 2014)]. (b, c) 

Schematic representations illustrating the concepts of equilibration volume (after Powell 

and Downes, 1990; Stüwe, 1997) and minimum volume for equilibration during 

anatexis. (a) Qtz-Pl-Kfs fine-grained homogeneous aplite, showing a Qtz-Pl-Kfs triple 

junction where partial melting has started, producing a homogeneous melt (pink) at 

equilibrium with Qtz and locally recrystallized Pl (dark green fringe) and Kfs (dark blue 

fringe). The equilibration volume corresponds to the melt plus Qtz and recrystallized Pl 

and Kfs fringes. The minimum volume for equilibrium in this rock corresponds to a cube 

≈1-1.5 mm of side length (red cube). Equilibration in this volume guarantees full 

equilibration in the rock. (c) Compositionally heterogeneous crustal protolith showing 

banding at the ≈50 cm scale, with the corresponding minimum volume for equilibrium for 

individual bands (red cubes) and the entire protolith (blue rectangular prism). (d) 

Schematic diagram showing the evolution (volume % versus relative % of equilibration) of 

individual phases during the H2O-absent muscovite-breakdown melting reaction, at the P-

T-X conditions of anatexis, and over time (t0, tdf, tfe). In this particular example, the rock 

mineral composition (in volume %) right before anatexis starts is 30% Qtz + 30% Bt + 

20% Ms + 15% Pl + 4% Grt + 1% accessory minerals, the grain size is ≈1 mm, and the 

length scales of diffusion are ≈10 mm (associated with a minimum volume for equilibrium 

of 125 mm
3
, i.e. a cube of 5 mm of length size). The stoichiometry of the melting reaction 

and proportion of melt generated are taken from Harris et al. (1995) and Clemens and 

Vielzeuf (1987). “t0” refers to the time when anatexis starts; “tfd” to the time when the 

reaction has gone to completion regarding volume proportions of phases, but not 

necessarely in terms of mineral-melt chemical equilibrium due e.g. to the sluggish 

diffusion of components in minerals; and “tfd” to the time when reaction has gone to 

completion and mineral-melt chemical equilibrium regarding major elements has been 

reached. We consider two cases. (1) The rate of melting is controlled by the kinetics of the 

interface reactions, and there is no recrystallization of minerals. Fig. 1d has been drawn for 

this case. In this case, tfe will be > hundreds of years to 1 ky for Qtz (as in this case rates of 

interface reaction are slower that rates of diffusion in melt; for Qtz, tfd will coincide with 

tfe); tens of millions of years for Pl; and, hence, tens of millions of years for the melt as 

well, as in this case the rate-limiting process controlling chemical equilibrium is diffusion 

in the minerals (see sections 2.1, 2.3); Mus disappears after reaction has gone to 

completion. Time frames for Zrn-melt equilibrium regarding Zr concentrations will depend 
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on the distribution in the rock of Zrn crystals accessible to the melt (for Zrn, tfd will also 

coincide with tfe). (2) The rate of melting is controlled by diffusion in melt, and there is 

rapid recrystallization of the residual minerals. In this other case, tfe will be of the order of 

hundreds of years to 1 ky for Qtz, as well as for Pl and melt, as in this case the rate-limiting 

process controlling chemical equilibrium is diffusion in the melt, and Si is the slowest 

diffusing component in melt (see sections 2.2, 2.4, 3.2). In this case tfd will coincide with 

tfe for all phases. 

Figure 2. Backscattered electron (BSE) scanning electron microscope (SEM) images of 690 

ºC H2O-saturated melting experiments of aplite at 0.2 GPa, showing the distribution of 

melt (gl, and shown by red arrow) wetting most of the grain boundaries. (a) 176-hr 

experiment. (b) 744-hr experiment.  Scale bar is 200 µm in length. Modified from Fig. 2 of 

Acosta-Vigil et al. (2006a). 

Figure 3. BSE image of a 123-hr, 800 ºC H2O-saturated aplite melting experiments (0.2 

GPa), illustrating the five main processes that may occur from the very beginning of 

melting. The rate of heating determine the extent of overstepping of the melting reaction, 

which in turn partially controls the role of each of the other four processes (see text for 

details). rPl refers to relict Pl, nPl to new Pl, and gl to glass. Modified after Fig. 5 of 

Acosta-Vigil et al. (2006a). 

Figure. 4. Schematic concentration profiles across, and perpendicular to the interface between 

a granitic melt column (x>0) and a dissolving mineral (x<0), for the case of pure (e.g. Qtz) 

and solid solution minerals (e.g. Pl), and either during interface reaction-controlled melting 

(a, b) or diffusion in melt-controlled melting (c, d). Blue and red dots indicate the 

equilibrium concentrations in mineral and melt, respectively, of a given compositional 

parameter at the P-T-X conditions of melting. “t0” refers to time at the onset of melting; 

“t1” and “t2” to progressively increasing times after t0; and “te” to the time when mineral 

and melt reach equilibrium. Insets show schematic phase diagrams showing the liquidus 

(purple line), solidus (dark blue line), starting mineral and melt compositions, and mineral 

and melt composition evolution with time. See text for explanation. 

Figure. 5. Schematic representation of the Qtz-Pl-Kfs fine-grained homogeneous aplite of 

Fig. 1, partially melted at (a) low degrees of T overstepping and (b) high degrees of T 

overstepping. Note that recrystallization of residual minerals is extensive during anatexis 

and high degrees of overstepping. nPl and nKfs refer to the new recrystallized Pl and Kfs, 

respectively. Insets show schematically the Qtz-Or-Ab normative compositions of melt in 

several microstructural locations (upper insets) and compositional profiles of melt between 

residual Pl and Qtz of melt (lower insets). See section 3 for explanation. 

Figure 6. Calculated time necessary for different degrees (60 to 100% relative) of 

compositional homogenization of crustal anatectic melts, as a function of minimum 

volume for equilibrium and diffusion distances involved [in this case for length scales of 

diffusion of 1-5 mm (a) or 1-10 m (b)], and for the several components in the haplogranite 

system and their corresponding eigenvalues calculated at 800ºC and 200 MPa H2O. 

Modified after Fig. 9 of Acosta-Vigil et al. (2012a). 

Figure. 7. Cartoons showing the difference between (a) “local diffusion” of Al and (b) “field 

diffusion” of alkalis (Na in this case) during the dissolution of corundum into haplogranite 

melt. Shaded areas and red and orange arrows indicate the melt region and direction, 

respectively, in which local diffusion of Al (red) and field diffusion of Na (orange) takes 

place. Profiles of concentrations and atomic ratios along traverses in the melt perpendicular 

to the corundum-melt interface are also shown. Vertical dashed lines in (b) represent fixed 

spatial references in the melt column. See text for details. Modified after Fig. 5 of Acosta-

Vigil et al. (2012a). 
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Figure. 8. Composition of glasses after the quartz dissolution experiment Acasi-236, as a 

function of distance to the quartz-glass interface (see Acosta-Vigil et al., 2006b). In this 

and following figures, each concentration profile represents the mean values of three 

analytical traverses perpendicular to the interface; the dashed lines refer to concentrations 

or molar ratios of a given element in the starting melt; pink area and red arrow indicate the 

melt region and direction, respectively, in which local diffusion of a particular element 

takes place. See text for explanation. 

Figure. 9. Composition of glasses after the corundum dissolution experiment Acasi-123, as a 

function of distance to the corundum-glass interface (see Acosta-Vigil et al., 2002). In this 

and following figures, pink+light yellow area and orange arrow indicate the melt region 

and direction, respectively, in which field diffusion of a particular element takes place. 

Figure. 10. Composition of glass cores along traverses parallel to their long axes, after the 

hydration/melting experiments Acasi-271 and Acasi-275, as a function of distance to the 

H2O-core interface (see Acosta-Vigil et al., 2005). Dashed vertical lines mark the position 

of the H diffusion front. 

Figure. 11. Concentration profiles in glass after the diffusion couple experiments DICO-0, 

DICO-7 and DICO-12, across traverses perpendicular to the interface (left panels for 

element concentrations, right panels for atomic ratios; see Morgan et al., 2008). These 

experiments juxtaposed metaluminous and peraluminous H2O-saturated haplogranite 

melts. The diffusion of alkalis already started in the 0-hour experiment DICO-0, as shown 

by changes in Al/alkalis atomic ratios in the dark orange area. See text for explanation. 

Figure. 12. Composition of glass after the “sandwich” dissolution experiment Acasi-236, as a 

function of distance to one of the mineral-melt interfaces (see Acosta-Vigil et al., 2006b). 

In this experiment, H2O-saturated metaluminous haplogranitic melt was placed in between 

corundum, to the left, and albite, to the right. See text for explanation. 

Figure. 13. (a) Schematic two-dimentional section of the minimum volume for equilibrium in 

metasedimentary rock undergoing partial melting by the peritectic reaction 

Bt+Sil+Pl+Qtz=Grt+Kfs+melt+Ilm. (b) and (c) show schematic concentrations profiles in 

melt between peritectic Grt and residual Pl, or between peritectic Kfs and residual Qtz, 

respectively, during diffusion-controlled melting of the rock, and before total melt 

homogenization has taken place. Notice unexpected increases of ASI towards dissolving Pl 

and Qtz, K towards dissolving Pl, or constant Al/Na molar ratios. See section 3 for further 

explanation.  

Figure. 14. Comparison between the wt% CIPW normative Qtz–Or–Ab compositions of 

glasses in El Hoyazo enclaves (separated as a function of microstructural location) and 

kinetics melting experiments (separated as a function of melting T). The experiments 

correspond to H2O-saturated aplite core melting experiments at low (690 ºC) and high (800 

ºC) degrees of T overstepping and 2 GPa. Haplogranitic minimum or eutectic points, 

cotectic lines and Qtz liquidus isotherms are from Tuttle and Bowen (1958) and Becker et 

al. (1998). Green, purple and black lines enclose the majority of analyses of MI in Pl, MI 

in Grt and matrix glass, respectively. Vertical and horizontal colored lines show the ranges 

in Qtz/feldspars and Ab/Or normative ratios, respectively, of glasses in each 

microstructural location or experimental T. See text for explanation. 

Figure. 15. Harker diagrams of glasses in El Hoyazo enclaves (as a function of 

microstructural location) and kinetics melting experiments (as a function of melting T). 

Vertical and horizontal colored lines show the ranges in Al/Na and ASI molar ratios, and 

SiO2 concentrations, respectively, of glasses in each microstructural location or 

experimental T.  

Figure. 16. Weight % CIPW normative Qtz–Or–Ab compositions of up-to-date 

rehomogenized and analyzed nanogranitoids in migmatites and granulites, together with 
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granite core melting experimental glasses and analyzed glassy melt inclusions in Pl, melt 

inclusions in Grt and matrix glass from El Hoyazo anatectic enclaves. Modified from Fig. 

13 of Cesare et al. (2015). “met.” refers to metatexites, and “diat.” to diatexites. See text 

for explanation. 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 52 

 
  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 53 

 
  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 54 

 
  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 55 

 
  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 56 

 
  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 57 

 
  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 58 

 
  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 59 

 
  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 60 

 
  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 61 

 
  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 62 

 
  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 63 

 
  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 64 

 
  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 65 

 
  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 66 

 
  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 67 

 
  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 68 

Table 1 Diffusivities in H2O-saturated haplogranitic melt and appropriate minerals, at typical crustal 
anatectic temperatures, corresponding to either values published in the literature, or values 
calculated from data in the literature using the Arrhenius relation (see compilation in Brady and 
Cherniak, 2010).  

Material Observations 
Diffusing 

component 
Diffusivities 
(800 ºC) 

Diffusivities 
(700-850 ºC) 

References 

Plagioclase 
Ab(92) (exsolved 0/26); wet NaSi-CaAl 

interdif 
5*10

-23
 m

2
/s 

2*10
-24

 - 2*10
-

22
 m

2
/s 

Liu and Yund 
(1992) 

 

Peristerite (An0-An26); 
XH2O=0.5 

NaSi-CaAl 
interdif 

4*10
-22

 m2/s 
2*10

-24
 - 4*10

-

21
 m

2
/s 

Baschek and 
Johannes (1995) 

 

An(80) (exsolved 70/90); 
wet 

NaSi-CaAl 
interdif 

4*10
-21

 m2/s 
1*10

-22
 - 2*10

-

20
 m

2
/s 

Liu and Yund 
(1992) 

 

An(80) (exsolved 70/90); dry NaSi-CaAl 
interdif 

8*10
-29

 m
2
/s 

2*10
-31

 - 1*10
-

27
 m

2
/s 

Grove et al. 
(1984) 

 

An(67) 
Sr 8*10

-21
 m

2
/s 

4*10
-22

 - 3*10
-

20
 m

2
/s 

Cherniak and 
Watson (1994) 

 

An(43) 
Sr 2*10

-20
 m

2
/s 

1*10
-21

 - 9*10
-

20
 m

2
/s 

Cherniak and 
Watson (1994) 

 

An(23) 
Sr 4*10

-20
 m

2
/s 

2*10
-21

 - 2*10
-

19
 m

2
/s 

Cherniak and 
Watson (1994) 

 

Ab(73) 
Sr 1*10

-19
 m

2
/s 

7*10
-21

 - 5*10
-

19
 m

2
/s 

Giletti and 
Casserly (1994) 

 

Ab(98) 
Sr 3*10

-18
 m

2
/s 

1*10
-19

 - 1*10
-

17
 m

2
/s 

Giletti and 
Casserly (1994) 

Orthoclase Or(94)Ab(6) 41K 
2*10

-17
 m

2
/s 

4*10
-18

 - 9*10
-

17
 m

2
/s 

Foland (1974) 

 Or(94)Ab(6) 22Na 
2*10

-14
 m

2
/s 

5*10
-15

 - 5*10
-

14
 m

2
/s 

Foland (1974) 

 Or(93) Sr 9*10-21 
m2/s 

2*10-21 - 
4*10-20 m2/s 

Cherniak and 
Watson (1992) 

Sanidine Or(61) 
Sr 1*10

-21
 m

2
/s 

9*10
-23

 - 1*10
-

20
 m

2
/s 

Cherniak (1996)  

 Or(61) 
Ba 2*10

-23
 m

2
/s 

2*10
-24

 - 2*10
-

22
 m

2
/s 

Cherniak (2002)  

Garnet 
Alm80Prp20--Sps94Alm6 
couple 

Fe-Mn 3*10
-21

 m
2
/s 

1*10
-22

 - 1*10
-

20
 m

2
/s 

Chakraborty and 
Ganguly (1992) 

 
Alm-Grs couple 

Ca-(Mg,Fe) 
interdif 

9*10
-20

 m
2
/s 

4*10
-21

 - 3*10
-

19
 m

2
/s 

Freer and 
Edwards (1999) 

 

Alm(51)Prp(45)Grs(3) Ca-(Mg,Fe) 
interdif 

5*10
-23

 m
2
/s 

5*10
-24

 - 1*10
-

22
 m

2
/s 

Vielzeuf et al. 
(2007) 

 

Alm with polycrystalline Prp Ca 
3*10

-22
 m

2
/s 

1*10
-23

 - 1*10
-

21
 m

2
/s 

Perchuk et al. 
(2009) 

 

Alm with polycrystalline Prp Fe 
3*10

-21
 m

2
/s 

1*10
-22

 - 1*10
-

20
 m

2
/s 

Perchuk et al. 
(2009) 

 

Alm(38)Prp(50)Gr(10)Sp(2) Mg 
2*10

-21
 m

2
/s 

1*10
-22

 - 6*10
-

21
 m

2
/s 

Chakraborty and 
Rubie (1996) 

 

spessartine - almandine 
garnets 

Mn 
4*10

-19
 m

2
/s 

4*10
-20

 - 1*10
-

18
 m

2
/s 

Loomis et al. 
(1985) 

 

Grs(93) 
Y 7*10

-23
 m

2
/s 

2*10
-24

 - 3*10
-

22
 m

2
/s 

Cherniak (2005) 

 

Alm(16)Prp(71)Grs(13) 
Dy 2*10

-24
 m

2
/s 

6*10
-26

 - 8*10
-

24
 m

2
/s 

Van Orman et al. 
(2002) 

 

Gr(93) 
Yb 5*10

-22
 m

2
/s 

1*10
-23

 - 2*10
-

21
 m

2
/s 

Cherniak (2005) 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 69 

 

Alm(16)Prp(71)Grs(13) 
Yb 4*10

-25
 m

2
/s 

7*10
-27

 - 2*10
-

24
 m

2
/s 

Van Orman et al. 
(2002) 

Haplogranitic 
melt 

H2O-saturated Si 
2.5*10

-15
 

m
2
/s  

Acosta-Vigil et 
al. (2006) 

  
Al 

1.5*10
-14

 
m

2
/s  

Acosta-Vigil et 
al. (2002) 

  
Ca 

  

Acosta-Vigil et 
al. (2012a) 

  
Na 

≥1*10
-8

 - 
1*10

-9
 m

2
/s  

Morgan et al. 
(2008) 

  
K 

≥1*10
-8

 - 
1*10

-9
 m

2
/s  

Morgan et al. 
(2008) 

  
H 4*10

-11
 m

2
/s 

 

Acosta-Vigil et 
al. (2005) 

  
Fe 1*10

-13
 m

2
/s 

 

Acosta-Vigil et 
al. (2012a) 

  
Mg 2*10

-13
 m

2
/s 

 

Acosta-Vigil et 
al. (2012a) 
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Table 2 Main characteristics of crustal anatexis in the reported cases of migmatites and granulites 
where nanogranites have been rehomogenized and analized.  

Locality Rock type Assemblage 
T, P 

conditions 
Melting 
reaction 

Reference 

Kerala 
Khondalite 
Belt (India) 

Felsic granulite 

Qtz-Kfs-Grt-Crd-Sil-Bt-Spl 
>900 ºC, 
0.6-0.8 

GPa 

H2O-absent 
Bt-

breakdown 

Cesare et 
al. (2009) 

Barun 
(Nepal) 

Metasedimentary 
migmatite 

Bt+Sil+Pl+Qtz+Grt 
800-860 

ºC, 0.8 GPa 
? 

Ferrero et 
al. (2012) 

Ojén, 
Ronda 
(Spain) 

Quartzo-
feldspathic 
metatexite 

Qtz-Pl-Kfs-Bt-Sil-Grt-Mus-Gr 
660-700 
ºC, 0.45-
0.5 GPa 

H2O-absent 
Ms- & Bt-

breakdown 

Bartoli et 
al. (2013a) 

La Galite 
(Tunisia) 

Tonalitic & 
garnetitic enclaves 

Pl+Qtz+Grt+Bt+Kfs+Ilm; 
Grt+Qtz±Kfs 

770-820 
ºC, 0.5 GPa 

H2O-present 
Bt-

breakdown 

Ferrero et 
al. (2014) 

Kali 
Gandaki 
(Nepal) 

Metasedimentary 
granulites & 
migmatites 

Qtz+P+Bt+Grt+Ky±Sil ? ? 
Carosi et 
al. (2015) 

OS Dome, 
Bohemian 
Massif 

Felsic granulite 

Grt+Ky+Qtz+Msp+Pl+Rt 
≥875 ºC, 
2.7 GPa 

H2O-absent 
hydrate-

breakdown? 

Ferrero et 
al. (2015) 

Jubrique, 
Ronda 
(Spain) 

Metapelitic 
granulite Grt+Qtz+Pl+Kfs+Sil+Crd+Bt+Spl+Ilm 

800 ºC, 
≤1.5 GPa 

H2O-present 
Bt-

breakdown 

Acosta-
Vigil et al. 

(2016) 

Ojén, 
Ronda 
(Spain) 

Quartzo-
feldspathic 
diatexite 

Qtz-Pl-Kfs-Sil-Grt-Ilm-Bt-Gr 
820 ºC, 0.6 

GPa 

H2O-absent 
Bt-

breakdown 

Bartoli et 
al. (2016b) 
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Highlights 

• There is little information on the controls on primary crustal melt compositions 

• We use experimental data to set up a framework describing the onset of anatexis 

• Melt inclusions from migmatites are compared with this framework  

• Melt inclusions provides information on the nature and mechanisms of anatexis 


