3,570 research outputs found
Dissociation of CH4 by electron impact: Production of metastable hydrogen and carbon fragments
Metastable fragments produced by electron impact excitation of CH4 have been investigated for incident electron energies from threshold to 300 eV. Only metastable hydrogen and carbon atoms were observed. Onset energies for the production of metastable hydrogen atoms were observed at electron impact energies of 22.0 + or - .5 eV, 25.5 + or - .6 eV, 36.7 + or - .6 eV and 66 + or - 3 eV, and at 26.6 + or - .6 eV for the production of metastable carbon atoms. Most of the fragments appear to have been formed in high-lying Rydberg states. The total metastable hydrogen cross section reaches a maximum value of approximately 1 X 10 to the minus 18th power sq cm at 100 eV. At the same energy, the metastable carbon cross section is 2 x 10 to the minus 19th power sq cm
A rapid prototyping/artificial intelligence approach to space station-era information management and access
Applications of rapid prototyping and Artificial Intelligence techniques to problems associated with Space Station-era information management systems are described. In particular, the work is centered on issues related to: (1) intelligent man-machine interfaces applied to scientific data user support, and (2) the requirement that intelligent information management systems (IIMS) be able to efficiently process metadata updates concerning types of data handled. The advanced IIMS represents functional capabilities driven almost entirely by the needs of potential users. Space Station-era scientific data projected to be generated is likely to be significantly greater than data currently processed and analyzed. Information about scientific data must be presented clearly, concisely, and with support features to allow users at all levels of expertise efficient and cost-effective data access. Additionally, mechanisms for allowing more efficient IIMS metadata update processes must be addressed. The work reported covers the following IIMS design aspects: IIMS data and metadata modeling, including the automatic updating of IIMS-contained metadata, IIMS user-system interface considerations, including significant problems associated with remote access, user profiles, and on-line tutorial capabilities, and development of an IIMS query and browse facility, including the capability to deal with spatial information. A working prototype has been developed and is being enhanced
Pipeline column separation flow regimes
A generalized set of pipeline column separation equations is presented describing all conventional types of low-pressure regions. These include water hammer zones, distributed vaporous cavitation, vapor cavities, and shocks (that eliminate distributed vaporous cavitation zones). Numerical methods for solving these equations are then considered, leading to a review of three numerical models of column separation. These include the discrete vapor cavity model, the discrete gas cavity model, and the generalized interface vaporous cavitation model. The generalized interface vaporous cavitation model enables direct tracking of actual column separation phenomena (e.g., discrete cavities, vaporous cavitation zones), and consequently, better insight into the transient event. Numerical results from the three column separation models are compared with results of measurements for a number of flow regimes initiated by a rapid closure of a downstream valve in a sloping pipeline laboratory apparatus. Finally, conclusions are drawn about the accuracy of the modeling approaches. A new classification of column separation (active or passive) is proposed based on whether the maximum pressure in a pipeline following column separation results in a short-duration pressure pulse that exceeds the magnitude of the Joukowsky pressure rise for rapid valve closure.Anton Bergant and Angus R. Simpso
Incorporation of excluded volume correlations into Poisson-Boltzmann theory
We investigate the effect of excluded volume interactions on the electrolyte
distribution around a charged macroion. First, we introduce a criterion for
determining when hard-core effects should be taken into account beyond standard
mean field Poisson-Boltzmann (PB) theory. Next, we demonstrate that several
commonly proposed local density functional approaches for excluded volume
interactions cannot be used for this purpose. Instead, we employ a non-local
excess free energy by using a simple constant weight approach. We compare the
ion distribution and osmotic pressure predicted by this theory with Monte Carlo
simulations. They agree very well for weakly developed correlations and give
the correct layering effect for stronger ones. In all investigated cases our
simple weighted density theory yields more realistic results than the standard
PB approach, whereas all local density theories do not improve on the PB
density profiles but on the contrary, deviate even more from the simulation
results.Comment: 23 pages, 7 figures, 1 tabl
Derivation of Hebb's rule
On the basis of the general form for the energy needed to adapt the
connection strengths of a network in which learning takes place, a local
learning rule is found for the changes of the weights. This biologically
realizable learning rule turns out to comply with Hebb's neuro-physiological
postulate, but is not of the form of any of the learning rules proposed in the
literature.
It is shown that, if a finite set of the same patterns is presented over and
over again to the network, the weights of the synapses converge to finite
values.
Furthermore, it is proved that the final values found in this biologically
realizable limit are the same as those found via a mathematical approach to the
problem of finding the weights of a partially connected neural network that can
store a collection of patterns. The mathematical solution is obtained via a
modified version of the so-called method of the pseudo-inverse, and has the
inverse of a reduced correlation matrix, rather than the usual correlation
matrix, as its basic ingredient. Thus, a biological network might realize the
final results of the mathematician by the energetically economic rule for the
adaption of the synapses found in this article.Comment: 29 pages, LaTeX, 3 figure
Apparent Fractality Emerging from Models of Random Distributions
The fractal properties of models of randomly placed -dimensional spheres
(=1,2,3) are studied using standard techniques for calculating fractal
dimensions in empirical data (the box counting and Minkowski-sausage
techniques). Using analytical and numerical calculations it is shown that in
the regime of low volume fraction occupied by the spheres, apparent fractal
behavior is observed for a range of scales between physically relevant
cut-offs. The width of this range, typically spanning between one and two
orders of magnitude, is in very good agreement with the typical range observed
in experimental measurements of fractals. The dimensions are not universal and
depend on density. These observations are applicable to spatial, temporal and
spectral random structures. Polydispersivity in sphere radii and
impenetrability of the spheres (resulting in short range correlations) are also
introduced and are found to have little effect on the scaling properties. We
thus propose that apparent fractal behavior observed experimentally over a
limited range may often have its origin in underlying randomness.Comment: 19 pages, 12 figures. More info available at
http://www.fh.huji.ac.il/~dani
Density Functional for Anisotropic Fluids
We propose a density functional for anisotropic fluids of hard body
particles. It interpolates between the well-established geometrically based
Rosenfeld functional for hard spheres and the Onsager functional for elongated
rods. We test the new approach by calculating the location of the the
nematic-isotropic transition in systems of hard spherocylinders and hard
ellipsoids. The results are compared with existing simulation data. Our
functional predicts the location of the transition much more accurately than
the Onsager functional, and almost as good as the theory by Parsons and Lee. We
argue that it might be suited to study inhomogeneous systems.Comment: To appear in J. Physics: Condensed Matte
Mode-coupling theory for multiple-time correlation functions of tagged particle densities and dynamical filters designed for glassy systems
The theoretical framework for higher-order correlation functions involving
multiple times and multiple points in a classical, many-body system developed
by Van Zon and Schofield [Phys. Rev. E 65, 011106 (2002)] is extended here to
include tagged particle densities. Such densities have found an intriguing
application as proposed measures of dynamical heterogeneities in structural
glasses. The theoretical formalism is based upon projection operator techniques
which are used to isolate the slow time evolution of dynamical variables by
expanding the slowly-evolving component of arbitrary variables in an infinite
basis composed of the products of slow variables of the system. The resulting
formally exact mode-coupling expressions for multiple-point and multiple-time
correlation functions are made tractable by applying the so-called N-ordering
method. This theory is used to derive for moderate densities the leading mode
coupling expressions for indicators of relaxation type and domain relaxation,
which use dynamical filters that lead to multiple-time correlations of a tagged
particle density. The mode coupling expressions for higher order correlation
functions are also succesfully tested against simulations of a hard sphere
fluid at relatively low density.Comment: 15 pages, 2 figure
Orientational order in dipolar fluids consisting of nonspherical hard particles
We investigate fluids of dipolar hard particles by a certain variant of
density-functional theory. The proper treatment of the long range of the
dipolar interactions yields a contribution to the free energy which favors
ferromagnetic order. This corrects previous theoretical analyses. We determine
phase diagrams for dipolar ellipsoids and spherocylinders as a function of the
aspect ratio of the particles and their dipole moment. In the nonpolar limit
the results for the phase boundary between the isotropic and nematic phase
agree well with simulation data. Adding a longitudinal dipole moment favors the
nematic phase. For oblate or slightly elongated particles we find a
ferromagnetic liquid phase, which has also been detected in computer
simulations of fluids consisting of spherical dipolar particles. The detailed
structure of the phase diagram and its evolution upon changing the aspect ratio
are discussed in detail.Comment: 35 pages LaTeX with epsf style, 11 figures in eps format, submitted
to Phys. Rev.
A recurrent neural network with ever changing synapses
A recurrent neural network with noisy input is studied analytically, on the
basis of a Discrete Time Master Equation. The latter is derived from a
biologically realizable learning rule for the weights of the connections. In a
numerical study it is found that the fixed points of the dynamics of the net
are time dependent, implying that the representation in the brain of a fixed
piece of information (e.g., a word to be recognized) is not fixed in time.Comment: 17 pages, LaTeX, 4 figure
- …
