1,196 research outputs found

    Evaluating uncertain CO2 abatement over the very long term

    Get PDF
    Climate change research with the economic methodology of cost–benefit analysis is challenging because of valuation and ethical issues associated with the long delays between CO2 emissions and much of their potential damages, typically of several centuries. The large uncertainties with which climate change impacts are known today and the possibly temporary nature of some envisaged CO2 abatement options exacerbate this challenge. For example, potential leakage of CO2 from geological reservoirs, after this greenhouse gas has been stored artificially underground for climate control reasons, requires an analysis in which the uncertain climatic consequences of leakage are valued over many centuries. We here present a discussion of some of the relevant questions in this context and provide calculations with the top–down energy-environment-economy model DEMETER. Given the long-term features of the climate change conundrum as well as of technologies that can contribute to its solution, we considered it necessary extending DEMETER to cover a period from today until the year 3000, a time span so far hardly investigated with integrated assessment models of climate change

    Learning Curves for Solid Oxide Fuel Cells

    Get PDF

    Targeting the innate immune system in pediatric and adult AML

    Get PDF
    While the introduction of T cell-based immunotherapies has improved outcomes in many cancer types, the development of immunotherapies for both adult and pediatric AML has been relatively slow and limited. In addition to the need to identify suitable target antigens, a better understanding of the immunosuppressive tumor microenvironment is necessary for the design of novel immunotherapy approaches. To date, most immune characterization studies in AML have focused on T cells, while innate immune lineages such as monocytes, granulocytes and natural killer (NK) cells, received less attention. In solid cancers, studies have shown that innate immune cells, such as macrophages, myeloid-derived suppressor cells and neutrophils are highly plastic and may differentiate into immunosuppressive cells depending on signals received in their microenvironment, while NK cells appear to be functionally impaired. Hence, an in-depth characterization of the innate immune compartment in the TME is urgently needed to guide the development of immunotherapeutic interventions for AML. In this review, we summarize the current knowledge on the innate immune compartment in AML, and we discuss how targeting its components may enhance T cell-based- and other immunotherapeutic approaches.</p

    Targeting the innate immune system in pediatric and adult AML

    Get PDF
    While the introduction of T cell-based immunotherapies has improved outcomes in many cancer types, the development of immunotherapies for both adult and pediatric AML has been relatively slow and limited. In addition to the need to identify suitable target antigens, a better understanding of the immunosuppressive tumor microenvironment is necessary for the design of novel immunotherapy approaches. To date, most immune characterization studies in AML have focused on T cells, while innate immune lineages such as monocytes, granulocytes and natural killer (NK) cells, received less attention. In solid cancers, studies have shown that innate immune cells, such as macrophages, myeloid-derived suppressor cells and neutrophils are highly plastic and may differentiate into immunosuppressive cells depending on signals received in their microenvironment, while NK cells appear to be functionally impaired. Hence, an in-depth characterization of the innate immune compartment in the TME is urgently needed to guide the development of immunotherapeutic interventions for AML. In this review, we summarize the current knowledge on the innate immune compartment in AML, and we discuss how targeting its components may enhance T cell-based- and other immunotherapeutic approaches.</p

    Hydrogen storage in depleted offshore gas fields in Brazil:Potential and implications for energy security

    Get PDF
    This article estimates the potential of using depleted offshore gas fields in Brazil for hydrogen storage and the effects this may have in terms of energy security. Brazil is starting to invest in producing green hydrogen associated with offshore wind energy generation. This initiative has stimulated the search for suitable locations to store hydrogen, including in depleted offshore gas reservoirs. The methodology used in this paper allows for identifying which of the 85 assessed depleted offshore gas fields are the most suitable for hydrogen storage and evaluating the storage capacity of the selected fields. In addition, a wind speed analysis is made to investigate possible locations for prospective wind energy generation projects that can accommodate green hydrogen production. As our main result, we find that the selected depleted offshore gas fields have the potential to store around 5483 TWh worth of hydrogen. This amount is equivalent to about 10 times the total annual electricity consumption in Brazil. Hence, Brazil can comfortably leverage its offshore wind potential in connection with hydrogen production to enhance the energy security of its electricity supply. Considering that to date primarily natural gas has been used as the main source of energy security in Brazil and that its share in the electricity sector has significantly increased over the last decade, the combination of hydrogen storage and renewable energy such as offshore wind power has the potential to provide a resilient and decarbonised electricity system in the country. Furthermore, hydrogen stored in offshore reservoirs in Brazil can become an important resource in the international energy market and constitute a possible key to energy security for countries to which Brazil may export hydrogen. We end our paper by providing comments on the challenges, opportunities, and prospects of offshore hydrogen storage in Brazil

    Discovery of a Nearby Low-Surface-Brightness Spiral Galaxy

    Get PDF
    During the course of a search for compact, isolated gas clouds moving with anomalous velocities in or near our own Galaxy (Braun and Burton 1998 A&A, in press), we have discovered, in the data of the Leiden/Dwingeloo survey (Hartmann and Burton 1997, Atlas of Galactic Neutral Hydrogen, CUP) of Galactic hydrogen, the HI signature of a large galaxy, moving at a recession velocity of 282 km/s, with respect to our Galaxy. Deep multicolor and spectroscopic optical observations show the presence of star formation in scattered HII regions; radio HI synthesis interferometry confirms that the galaxy is rich in HI and has the rotation signature of a spiral galaxy; a submillimeter observation failed to detect the CO molecule. The radio and optical evidence combined suggest its classification as a low-surface-brightness spiral galaxy. It is located in close spatial and kinematic proximity to the galaxy NGC 6946. The newly-discovered galaxy, which we call Cepheus 1, is at a distance of about 6 Mpc. It is probably to be numbered amongst the nearest few LSB spirals.Comment: 13 page LaTeX, requires aastex, 4 GIF figures. Accepted for publication in the AJ, January 199

    Exploring Neutral Hydrogen and Galaxy Evolution with the SKA

    Full text link
    One of the key science drivers for the development of the SKA is to observe the neutral hydrogen, HI, in galaxies as a means to probe galaxy evolution across a range of environments over cosmic time. Over the past decade, much progress has been made in theoretical simulations and observations of HI in galaxies. However, recent HI surveys on both single dish radio telescopes and interferometers, while providing detailed information on global HI properties, the dark matter distribution in galaxies, as well as insight into the relationship between star formation and the interstellar medium, have been limited to the local universe. Ongoing and upcoming HI surveys on SKA pathfinder instruments will extend these measurements beyond the local universe to intermediate redshifts with long observing programmes. We present here an overview of the HI science which will be possible with the increased capabilities of the SKA and which will build upon the expected increase in knowledge of HI in and around galaxies obtained with the SKA pathfinder surveys. With the SKA1 the greatest improvement over our current measurements is the capability to image galaxies at reasonable linear resolution and good column density sensitivity to much higher redshifts (0.2 < z < 1.7). So one will not only be able to increase the number of detections to study the evolution of the HI mass function, but also have the sensitivity and resolution to study inflows and outflows to and from galaxies and the kinematics of the gas within and around galaxies as a function of environment and cosmic time out to previously unexplored depths. The increased sensitivity of SKA2 will allow us to image Milky Way-size galaxies out to redshifts of z=1 and will provide the data required for a comprehensive picture of the HI content of galaxies back to z~2 when the cosmic star formation rate density was at its peak.Comment: 25 pages, 5 figures, 3 tables. Contribution to the conference 'Advancing Astrophysics with the Square Kilometre Array', June 8-13, 2014, Giardini Naxos, Ital

    A search for 21 cm HI absorption in AT20G compact radio galaxies

    Get PDF
    We present results from a search for 21 cm associated HI absorption in a sample of 29 radio sources selected from the Australia Telescope 20 GHz survey. Observations were conducted using the Australia Telescope Compact Array Broadband Backend, with which we can simultaneously look for 21 cm absorption in a redshift range of 0.04 < z < 0.08, with a velocity resolution of 7 km/s . In preparation for future large-scale H I absorption surveys we test a spectral-line finding method based on Bayesian inference. We use this to assign significance to our detections and to determine the best-fitting number of spectral-line components. We find that the automated spectral-line search is limited by residuals in the continuum, both from the band-pass calibration and spectral-ripple subtraction, at spectral-line widths of \Deltav_FWHM > 103 km/s . Using this technique we detect two new absorbers and a third, previously known, yielding a 10 per cent detection rate. Of the detections, the spectral-line profiles are consistent with the theory that we are seeing different orientations of the absorbing gas, in both the host galaxy and circumnuclear disc, with respect to our line-of-sight to the source. In order to spatially resolve the spectral-line components in the two new detections, and so verify this conclusion, we require further high-resolution 21 cm observations (~0.01 arcsec) using very long baseline interferometry.Comment: 16 pages, 8 figures and 5 tables; accepted for publication in MNRAS (version 2 based on proof corrections

    Skin microbiota analysis in patients with anorexia nervosa and healthy-weight controls reveals microbial indicators of healthy weight and associations with the antimicrobial peptide psoriasin

    Get PDF
    Anorexia nervosa (AN), a psychiatric condition defined by low body weight for age and height, is associated with numerous dermatological conditions. Yet, clinical observations report that patients with AN do not suffer from infectious skin diseases like those associated with primary malnutrition. Cell-mediated immunity appears to be amplified in AN; however, this proinflammatory state does not sufficiently explain the lower incidence of infections. Antimicrobial peptides (AMPs) are important components of the innate immune system protecting from pathogens and shaping the microbiota. In Drosophila melanogaster starvation precedes increased AMP gene expression. Here, we analyzed skin microbiota in patients with AN and age-matched, healthy-weight controls and investigated the influence of weight gain on microbial community structure. We then correlated features of the skin microbial community with psoriasin and RNase 7, two highly abundant AMPs in human skin, to clarify whether an association between AMPs and skin microbiota exists and whether such a relationship might contribute to the resistance to cutaneous infections observed in AN. We find significant statistical correlations between Shannon diversity and the highly abundant skin AMP psoriasin and bacterial load, respectively. Moreover, we reveal psoriasin significantly associates with Abiotrophia, an indicator for the healthy-weight control group. Additionally, we observe a significant correlation between an individual’s body mass index and Lactobacillus, a microbial indicator of health. Future investigation may help clarify physiological mechanisms that link nutritional intake with skin physiology

    Pathways to Mexico’s climate change mitigation targets: a multi-model analysis

    Get PDF
    AbstractMexico’s climate policy sets ambitious national greenhouse gas (GHG) emission reduction targets—30% versus a business-as-usual baseline by 2020, 50% versus 2000 by 2050. However, these goals are at odds with recent energy and emission trends in the country. Both energy use and GHG emissions in Mexico have grown substantially over the last two decades. We investigate how Mexico might reverse current trends and reach its mitigation targets by exploring results from energy system and economic models involved in the CLIMACAP-LAMP project. To meet Mexico’s emission reduction targets, all modeling groups agree that decarbonization of electricity is needed, along with changes in the transport sector, either to more efficient vehicles or a combination of more efficient vehicles and lower carbon fuels. These measures reduce GHG emissions as well as emissions of other air pollutants. The models find different energy supply pathways, with some solutions based on renewable energy and others relying on biomass or fossil fuels with carbon capture and storage. The economy-wide costs of deep mitigation could range from 2% to 4% of GDP in 2030, and from 7% to 15% of GDP in 2050. Our results suggest that Mexico has some flexibility in designing deep mitigation strategies, and that technological options could allow Mexico to achieve its emission reduction targets, albeit at a cost to the country
    • …
    corecore