
Learning Curves for Solid Oxide Fuel Cells

R. Rivera-Tinoco, K. Schoots, B.C.C. van der Zwaan

This document appeared in

Detlef Stolten, Thomas Grube (Eds.):
18th World Hydrogen Energy Conference 2010 - WHEC 2010
Parallel Sessions Book 1: Fuel Cell Basics / Fuel Infrastructures
Proceedings of the WHEC, May 16.-21. 2010, Essen
Schriften des Forschungszentrums Jülich / Energy & Environment, Vol. 78-1
Institute of Energy Research - Fuel Cells (IEF-3)
Forschungszentrum Jülich GmbH, Zentralbibliothek, Verlag, 2010
ISBN: 978-3-89336-651-4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/34994345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Learning Curves for Solid Oxide Fuel Cells 

R. Rivera-Tinoco, K. Schoots, Energy research Centre of the Netherlands, Policy 
Studies, The Netherlands 
B.C.C. van der Zwaan, Energy research Centre of the Netherlands, Policy Studies; 
Columbia University, Lenfest Center for Sustainable Energy, The Earth Institute, New 
York City, NY, USA 

Abstract 
We present learning curves for solid oxide fuel cells (SOFCs) and combined heat and power 
(CHP) SOFC systems with an electric capacity between 1 and 250 kW. On the basis of the 
cost breakdown of production cost data from fuel cell manufacturers, we developed a 
bottom-up model that allows for determining overall manufacturing costs from their 
respective cost components, among which material, energy, labor, and capital charges. The 
results obtained from our model prove to deviate by at most 13% from total cost figures 
quoted in the literature. For the early pilot stage of development, we find for SOFC 
manufacturing a learning rate between 14% and 17%, and for total SOFC system fabrication 
between 16% and 19%. We argue that the corresponding cost reductions result largely from 
learning-by-searching effects (R&D) rather than learning-by-doing. When considering a 
longer time frame that includes the early commercial production stage, we find learning rates 
between 14% and 39%, which represent a mix of phenomena such as learning-by-doing, 
learning-by-searching, economies-of-scale and automation. 
Keywords: SOFC, learning-by-doing, economies-of-scale, automation 

1 Introduction 

Interest in power generation with solid oxide fuel cells (SOFCs), as well as R&D dedicated to 
this type of technology, has considerably increased over the past few years. Among the 
reasons are their high efficiency relative to conventional gas and coal based power units: 
even in comparison to for instance an integrated gasification combined cycle (IGCC) plant 
their electric efficiency is typically more than 10% higher [1]. Another explanation for the 
increased attention for SOFCs is the possibility of effectively recovering their exhaust heat, 
given the high temperatures under which they operate. As with other fuel cell systems, a 
combined heat and power (CHP) SOFC system consists of a stack of SOFCs and a balance-
of-plant (BoP). The electrochemical reaction between oxygen and the fuel – such as 
hydrogen, methane or (a mix of) other hydrocarbon gases – takes place in the stack of fuel 
cells. The BoP supports the stack, drives the fuel through the fuel cells and can recover 
energy from the high-temperature exhaust gas. 
In spite of their high electric efficiency and ensuing economic benefits, the fabrication costs 
of SOFC systems, and hence their purchase prices, are still significantly higher than 
strategically adopted target values. As a result, the cost of electricity generation with SOFCs 
are today well above those of most conventional alternatives. The development of SOFCs, 
however, is only in the pilot stage and has not yet reached full commercial production. 
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Hence, progressively significant cost reductions are expected for the future when the 
technology transits through the various stages of maturation. 
The learning curve methodology allows for estimating the cost prospects of innovative 
technology and allows for determining the competitive breakeven point with respect to 
existing technology. The developed learning curves may apply to a large range of different 
types of technologies and serve company strategic purposes and as a tool for public policy 
making. For the latter, we found information notably of energy-related technologies [2-5]. The 
rapidity of learning is usually expressed by the learning rate, a measure for the relative cost 
reduction of a good with every doubling of produced or installed capacity. A learning curve 
expresses graphically the cost decrease of a technology and is usually represented by a 
power law (see equation 1). When cost and cumulative capacity data are plotted on a 
double-logarithmic scale, the power law of a learning curve becomes a downward sloping 
straight line. The slope of this line is called the learning index (α) [6-7], which can be 
reformulated as the learning rate (lr) (see equation 2). 
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Schoots et al. [8] present an extensive analysis of learning phenomena for fuel cells and the 
present work aims to complement this recent fuel cell learning curve study, since so far no 
learning rates have been reported – or have been determined – for SOFCs. In our fuel cells 
case, the variables in equation 1 are the costs of SOFCs at time t (ct), the costs of SOFCs in 
the first batch of production (the time of which is referred to as t = 0) (c0), the cumulated 
production of SOFCs at time t (Pt), and the number of SOFCs in the first fabrication batch 
(hence at t = 0) (P0). We express values of P either in number of SOFCs (typically for fuel 
cells) or in terms of their capacity (hence in kW, for example when referring to SOFC 
systems). 

2 Cost Requirements for SOFCs 

In the current pre-commercial production phase, planar and tubular geometries of SOFCs 
dominate triangular and other shapes. For all these geometries, individual fuel cells are 
assembled in stacks that are subsequently integrated with the BoP. An individual fuel cell 
consists of a multilayer device including the anode, electrolyte, cathode, and interconnects. 
For today’s SOFC manufacture, the first three components are made of state-of-the-art 
ceramics, such as respectively Nickel Oxide - Yttria Stabilized Zirconia (NiO-YSZ), YSZ and 
Lanthanum Strontium Manganite (LSM). Interconnects are fabricated usually of high 
performance stainless steel alloys [9-12]. Below we will mostly investigate planar SOFCs, 
because data for this type are more abundant than for tubular SOFCs. An analysis of the 
manufacturing sequence and cost components of SOFC production, as described in the 
following sections, serves to estimate total fuel cell and system fabrication costs. The latter 
constitute the basis for our attempt to determine a learning curve for SOFCs. 
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Total costs 
The planar SOFC are produced according to a specific sequence of steps and techniques 
that depend on (and determine) the manufacturing material, processing speed, production 
yield, and fuel cell width [13-15]. For our study we assess the most commonly used method 
for multilayer ceramics manufacturing, which is the tape-casting of anode and screen-printing 
of electrolyte and cathode. After the cutting process elementary fuel cells are formed by 
adding shaped interconnects to the multilayered ceramic units. A series of individual fuel 
cells are piled together to become an SOFC stack. 
Most intricacies of SOFC manufacturing techniques and materials are well documented in 
the literature. However, while cost components related to the use of materials and energy are 
usually fairly well known, little information is often available on contributions from notably 
labor and capital charges. This implies that total manufacturing cost values quoted in public 
sources possess a high degree of heterogeneity. This complicates attempts to observe 
learning phenomena, and renders difficult efforts to calculate accurately learning rates. In 
order to determine the presence (or absence) of learning-by-doing, and develop learning 
curves, we have greatly endeavored to subtract heterogeneity from our data set as much as 
possible. For this purpose, we developed a detailed bottom-up model in which we distinguish 
between the four main cost components that contribute to the overall SOFC production 
process: 

 Material costs. Total annual material costs are estimated accounting volume and 
price of materials purchased per year by a manufacturing facility. 

 Energy costs. We assume that annual energy expenses results from the total fuel cell 
capacity produced by a facility per year, the energy requirements per unit of capacity 
[15] and the energy costs. 

 Labor costs (Clab). Collected data show that, when no process automation techniques 
are implemented, the work directly related to manufacturing and stack assembling is 
performed by typically five individuals full-time employed when an annual volume of 
25000 fuel cells is produced [16-17]. We assume that Clab is proportional to the gross 
Average Employment Income (AEI) in the country of SOFC manufacturing under 
consideration [18] and that, with no automation, the number of individuals employed 
in the plant increases linearly, β=1.0, with the fuel cell production scale, and when 
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 Capital charges. Two main types of capital charges can be distinguished as 
investment requirements for the construction of a fuel cell production facility: 
equipment costs (Ceq) and terrain- and building costs (Ctr). Both represent figures for 
total capital costs per annum (Ccap) as they are transformed from total investment 
values into annual capital costs through the annuities relationship for capital 
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in which r is the interest rate (which we suppose to be 8%) and T the period of loan 
amortization (for which we assume a time frame of 10 years). 
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From a survey of the literature, we assume in our model that the total level of equipment 
costs varies linearly with the expenses related to the acquisition of furnaces, for which we 
suppose a dominating constant average contribution of 50% [16-17]. Aware of the latter, the 
model allows for estimating fuel cell manufacturing cost values under several assumptions of 
economies-of-scale on furnace prices. 

3 Learning Curves for SOFCs 

We present in this section the learning curve study for production cost of SOFCs. Available 
yield and cost data derives from R&D, pilot and early commercial stages for the major fuel 
cell manufacturers. With exemption of CFCL, because of its business plan statements, this 
study deals with learning phenomena for both at each stage and total lifetime of HC Starck, 
Versa and Topsoe facilities. As means of a tool, our cost model enables to separately study 
cost reductions driven by non-learning phenomena, as well as rendering cost data 
homogeneous, and estimating additional cost values. 

3.1 Improving production yield 
An important facet of the produced capacity figure is the production yield of fuel cells, that is, 
what is the number of SOFCs successfully manufactured per production bulk. Failure on fuel 
cell production takes place mainly during the sintering step, followed by the multilayer 
production and handling steps [13]. Our analysis show that effort on R&D and experience 
acquired results on 11% decrease on failure rate every doubling on cumulative capacity of 
fuel cells. Once early commercial production of SOFCs starts, a minimal yield rate of 80% is 
observed frequently. 
 

 
Figure 1: Learning curve for the failure rate of fuel cell production processes. Data from 

VERSA, Topsoe, HC Starck. [19-22]. 
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3.2 Reducing manufacturing costs 
Commencing this section with the major European manufacturer (HC Starck), we gather 
production cost values from R&D, pilot and early commercial production stages in the same 
plot (see figure 2). We include cost data and modeled cost values. Cost reduction obtained 
through automation and economies-of-scale are not studied in this step of the analysis. 
 

 

Figure 2: Learning curves for SOFC manufacturing. Data from HC Starck [16] and our model. 

We estimate the learning rate value for R&D stage at 16% and for which material and labor 
costs remain high and are not affected for the volume of fuel cells produced. During the pilot 
stage, we observe that the learning rate every doubling of cumulative capacity is up to 42%. 
However, we estimated fuel cell production costs with our model subtracting the influence of 
economies-of-scale from material costs. Whether the purchase volume of powders, we 
assumed constant values for material costs. Learning rate results on a value of 27% and we 
suppose represents mainly pure learning-by-doing. Early commercial stage faces constrains 
against labor and capital costs, rather than material costs. The learning rate value is 
estimated at 5% and we suppose that learning-by-doing phenomena are mainly represented. 
Accounting the relevant impact of labor and capital costs since the early commercial 
production stage is reached we studied further potential cost reductions driven by 
automation. Economies-of-scale related to material purchase volume and equipment 
investments are simultaneously considered. The learning rate reaches values from 35% to 
39% for slightly to highly automation respectively. 
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Figure 3: Modeled cost values for SOFC production under assumptions for automation and 
economies-of-scale effects. Data from our model and from HC Starck [16]. 

As our model is based on production capacity data, instead of current production capacity, 
and accounting that HC Starck has the highest capacity among the major fuel cell producers, 
we performed the sensitivity study of the impact of pilot and early commercial production 
capacity on cost estimations. Cost data available and estimated, only for the R&D stage, 
were straightly retained as they correspond to accurate values of produced fuel cells. For 
further production stages, we supposed a 50% load factor of the HC Starck facility. The lr 
results on 30% for medium automated facility (β=0.7) instead of 35% estimated with 100% 
load factor. This enables to estimate a maximal impact on lr values of 5% derived from 
uncertainties in manufacturers load factor. 
Accounting facility capacity important differences, cost data from VERSA and Topsoe 
facilities are studied separately. Both facilities present a capacity equivalent to a R&D – semi 
pilot stage. Estimated fuel cell production costs deviate at most 13% of literature data. 
Learning rate values are found between 14% and 17%. Learning rate values from HC Starck, 
Versa, and Topsoe confirm that mainly learning-by-searching phenomena enable to reduce 
production costs by around 15%. Based on the fact that a confirmed value for learning 
curves is found at R&D and pilot production capacities, we will retain the costs and capacity 
data in order to go further with our learning curve analysis for SOFC systems. 

4 Learning Curves for SOFC Systems 

4.1 BoP costs 
Material, energy, labor, and capital costs are included in the modeling of BoP manufacturing 
cost under similar assumptions than fuel cell production. The latter assumes that material 
and energy cost values derive from the required elements and their needed quantities to 
build up the BoP. As information related to labor costs (individuals needed) to produce and 
assemble the BoP is highly scarce and heterogeneous, the number of individuals is assumed 
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to be equal to the one for SOFCs manufacture. The total SOFC system labor cost would then 
become twice the value of fuel cell labor cost. For capital costs, we assume that they can be 
neglected. Indeed, the means required for these cost components are relatively small in 
comparison to the other contributions to overall costs. 

4.2 System learning 
Estimated cost values for 5 kW SOFC systems show that BoP contribution to total system 
manufacturing cost represents 64%. The latter fits with data provided by the consulting firm 
Arthur D. Little Inc. [23]. For different SOFC system capacities, the number of fuel cells 
contained in the stacks varies linearly with the requested power output. However, BoP would 
present a non-linear variation resulting on variable cost contribution, such as presented by 
Schoots et al. for PEMFC systems [8]. As the value of 64% is the only data point available for 
BoP contribution to SOFC system cost, we assumed that it would become the reference 
point for scaling contribution values for different SOFC systems presenting various power 
output values. The former is modeled under assumptions for an analogical behavior between 
PEMFC and SOFC BoP contribution to the system cost. The plot of modeled system costs 
based on R&D and pilot production capacities and data available derive on learning rate 
values for 1 to 250 kW SOFC systems between 17% and 19% (figure 4). The refunding of 
capital charges for both fuel cell and BoP side are not included in the costs plotted, but they 
would importantly increase the system cost depending on economic parameters used to 
discount investments. 
 

 

Figure 4: Learning curve for planar SOFC systems for 1 and 250 kW (electric power output). 
Modeled data and obtained from [23]. 

5 Conclusion 

The learning curves for SOFCs and their systems presented in this paper are derived from 
modeled manufacturing costs as well as manufacturer data from the open literature. For the 
R&D and pilot stage of planar SOFCs, we obtained learning rates ranging from 14% to 17%. 
For the stages beyond, i.e. the early commercial phase, we modeled manufacturing cost 
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data and applied corrections in order to eliminate effects from economies-of-scale and 
automation. These data in combination with production capacity figures from HC Starck 
formed the basis of our learning-by-doing analysis. We found a learning curve characterized 
by a learning rate of 27 ± 15%. If phenomena of automation and economies-of-scale, as 
additional major drivers of cost reductions, had been taken into account, we would have 
obtained a learning rate of 39%. We point out that such a high rate is unsustainable. At any 
rate, in this and other papers, we demonstrate that the phenomenon of learning tends to 
decay, and gradually phase out towards zero. Based on real and modeled cost data from 
facilities run by VERSA and Topsoe, we find learning rates between 17% and 19% for SOFC 
systems with an electric output between 1 kW and 250 kW. These values correspond well 
with observed learning rates determined for a wide range of other energy technologies. Like 
with planar SOFCs, we developed a cost model for tubular SOFC systems. A lack of cost 
and installed capacity data, however, did not enable us to derive an accurate learning rate for 
such designs. 
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