507 research outputs found
Iron(III)-catalyzed chlorination of activated arenes
A general and regioselective method for the chlorination of activated arenes has been developed. The transformation uses iron(III) triflimide as a powerful Lewis acid for the activation of N-chlorosuccinimide and the subsequent chlorination of a wide range of anisole, aniline, acetanilide and phenol derivatives. The reaction was utilized for the late-stage mono- and di-chlorination of a range of target compounds such as the natural product nitrofungin, the antibacterial agent chloroxylenol and the herbicide chloroxynil. The facile nature of this transformation was demonstrated with the development of one-pot tandem iron-catalyzed dihalogenation processes allowing highly regioselective formation of different carbon-halogen bonds. The synthetic utility of the resulting dihalogenated aryl compounds as building blocks was established with the synthesis of natural products and pharmaceutically relevant targets
Rayleigh-Taylor instability of crystallization waves at the superfluid-solid 4He interface
At the superfluid-solid 4He interface there exist crystallization waves
having much in common with gravitational-capillary waves at the interface
between two normal fluids. The Rayleigh-Taylor instability is an instability of
the interface which can be realized when the lighter fluid is propelling the
heavier one. We investigate here the analogues of the Rayleigh-Taylor
instability for the superfluid-solid 4He interface. In the case of a uniformly
accelerated interface the instability occurs only for a growing solid phase
when the magnitude of the acceleration exceeds some critical value independent
of the surface stiffness. For the Richtmyer-Meshkov limiting case of an
impulsively accelerated interface, the onset of instability does not depend on
the sign of the interface acceleration. In both cases the effect of
crystallization wave damping is to reduce the perturbation growth-rate of the
Taylor unstable interface.Comment: 8 pages, 2 figures, RevTe
De-Trending Time Series for Astronomical Variability Surveys
We present a de-trending algorithm for the removal of trends in time series.
Trends in time series could be caused by various systematic and random noise
sources such as cloud passages, changes of airmass, telescope vibration or CCD
noise. Those trends undermine the intrinsic signals of stars and should be
removed. We determine the trends from subsets of stars that are highly
correlated among themselves. These subsets are selected based on a hierarchical
tree clustering algorithm. A bottom-up merging algorithm based on the departure
from normal distribution in the correlation is developed to identify subsets,
which we call clusters. After identification of clusters, we determine a trend
per cluster by weighted sum of normalized light-curves. We then use quadratic
programming to de-trend all individual light-curves based on these determined
trends. Experimental results with synthetic light-curves containing artificial
trends and events are presented. Results from other de-trending methods are
also compared. The developed algorithm can be applied to time series for trend
removal in both narrow and wide field astronomy.Comment: Revised version according to the referee's second revie
XY models with disorder and symmetry-breaking fields in two dimensions
The combined effect of disorder and symmetry-breaking fields on the
two-dimensional XY model is examined. The study includes disorder in the
interaction among spins in the form of random phase shifts as well as disorder
in the local orientation of the field. The phase diagrams are determined and
the properties of the various phases and phase transitions are calculated. We
use a renormalization group approach in the Coulomb gas representation of the
model. Our results differ from those obtained for special cases in previous
works. In particular, we find a changed topology of the phase diagram that is
composed of phases with long-range order, quasi-long-range order, and
short-range order. The discrepancies can be ascribed to a breakdown of the
fugacity expansion in the Coulomb gas representation.
Implications for physical systems such as planar Josephson junctions and the
faceting of crystal surfaces are discussed.Comment: 17 pages Latex with 5 eps figures, change: acknowledgment extende
Hidden spin-current conservation in 2d Fermi liquids
We report the existence of regimes of the two dimensional Fermi liquid that
show unusual conservation of the spin current and may be tuned by varying some
parameter like the density of fermions. We show that for reasonable models of
the effective interaction the spin current may be conserved in general in 2d,
not only for a particular regime. Low temperature spin waves propagate
distinctively in these regimes and entirely new ``spin-acoustic'' modes are
predicted for scattering-dominated temperature ranges. These new
high-temperature propagating spin waves provide a clear signature for the
experimental search of such regimes.Comment: 4 pages, no figures, revised version, accepted for pub. in the PR
Surface Region of Superfluid Helium as an Inhomogeneous Bose-Condensed Gas
We present arguments that the low density surface region of self-bounded
superfluid He systems is an inhomogeneous dilute Bose gas, with almost all
of the atoms occupying the same single-particle state at . Numerical
evidence for this complete Bose-Einstein condensation was first given by the
many-body variational calculations of He droplets by Lewart, Pandharipande
and Pieper in 1988. We show that the low density surface region can be treated
rigorously using a generalized Gross-Pitaevskii equation for the Bose order
parameter.Comment: 4 pages, 1 Postscript figur
A novel mass spectrometry-based assay for GSK-3β activity
BACKGROUND: As a component of the progression from genomic to proteomic analysis, there is a need for accurate assessment of protein post-translational modifications such as phosphorylation. Traditional kinase assays rely heavily on the incorporation of γ-P(32 )radiolabeled isotopes, monoclonal anti-phospho-protein antibodies, or gel shift analysis of substrate proteins. In addition to the expensive and time consuming nature of these methods, the use of radio-ligands imposes restrictions based on the half-life of the radionucleotides and pose potential health risks to researchers. With the shortcomings of traditional assays in mind, the aim of this study was to develop a high throughput, non-radioactive kinase assay for screening Glycogen Synthase Kinase-3beta (GSK-3β) activity. RESULTS: Synthetic peptide substrates designed with a GSK-3β phosphorylation site were assayed with both recombinant enzyme and GSK-3β immunoprecipitated from NIH 3T3 fibroblasts. A molecular weight shift equal to that of a single phosphate group (80 Da.) was detected by surface enhanced laser desorption/ionization time of flight mass spectrometry (SELDI-TOF-MS) in a GSK-3β target peptide (2B-Sp). Not only was there a dose-dependent response in molecular weight shift to the amount of recombinant GSK-3β used in this assay, this shift was also inhibited by lithium chloride (LiCl), in a dose-dependent manner. CONCLUSION: We present here a novel method to sensitively measure peptide phosphorylation by GSK-3β that, due to the incorporation of substrate controls, is applicable to either purified enzyme or cell extracts. Future studies using this method have the potential to elucidate the activity of GSK-3β in vivo, and to screen enzyme activity in relation to a variety of GSK-3β related disorders
Transcriptional Evidence for the Role of Chronic Venlafaxine Treatment in Neurotrophic Signaling and Neuroplasticity Including also Glutatmatergic- and Insulin-Mediated Neuronal Processes.
OBJECTIVES: Venlafaxine (VLX), a serotonine-noradrenaline reuptake inhibitor, is one of the most commonly used antidepressant drugs in clinical practice for the treatment of major depressive disorder (MDD). Despite being more potent than its predecessors, similarly to them, the therapeutical effect of VLX is visible only 3-4 weeks after the beginning of treatment. Furthermore, recent papers show that antidepressants, including also VLX, enhance the motor recovery after stroke even in non depressed persons. In the present, transcriptomic-based study we looked for changes in gene expressions after a long-term VLX administration. METHODS: Osmotic minipumps were implanted subcutaneously into Dark Agouti rats providing a continuous (40 mg/kg/day) VLX delivery for three weeks. Frontal regions of the cerebral cortex were isolated and analyzed using Illumina bead arrays to detect genes showing significant chances in expression. Gene set enrichment analysis was performed to identify specific regulatory networks significantly affected by long term VLX treatment. RESULTS: Chronic VLX administration may have an effect on neurotransmitter release via the regulation of genes involved in vesicular exocytosis and receptor endocytosis (such as Kif proteins, Myo5a, Sv2b, Syn2 or Synj2). Simultaneously, VLX activated the expression of genes involved in neurotrophic signaling (Ntrk2, Ntrk3), glutamatergic transmission (Gria3, Grin2b and Grin2a), neuroplasticity (Camk2g/b, Cd47), synaptogenesis (Epha5a, Gad2) and cognitive processes (Clstn2). Interestingly, VLX increased the expression of genes involved in mitochondrial antioxidant activity (Bcl2 and Prdx1). Additionally, VLX administration also modulated genes related to insulin signaling pathway (Negr1, Ppp3r1, Slc2a4 and Enpp1), a mechanism that has recently been linked to neuroprotection, learning and memory. CONCLUSIONS: Our results strongly suggest that chronic VLX treatment improves functional reorganization and brain plasticity by influencing gene expression in regulatory networks of motor cortical areas. These results are consonant with the synaptic (network) hypothesis of depression and antidepressant-induced motor recovery after stroke
Water-Deficit Tolerance and Field Performance of Transgenic Alfalfa Overexpressing Superoxide Dismutase
Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.
Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability
- …
