439 research outputs found

    A generalization of the Heine--Stieltjes theorem

    Full text link
    We extend the Heine-Stieltjes Theorem to concern all (non-degenerate) differential operators preserving the property of having only real zeros. This solves a conjecture of B. Shapiro. The new methods developed are used to describe intricate interlacing relations between the zeros of different pairs of solutions. This extends recent results of Bourget, McMillen and Vargas for the Heun equation and answers their question on how to generalize their results to higher degrees. Many of the results are new even for the classical case.Comment: 12 pages, typos corrected and refined the interlacing theorem

    Localization Properties of the Chalker-Coddington Model

    Full text link
    The Chalker Coddington quantum network percolation model is numerically pertinent to the understanding of the delocalization transition of the quantum Hall effect. We study the model restricted to a cylinder of perimeter 2M. We prove firstly that the Lyapunov exponents are simple and in particular that the localization length is finite; secondly that this implies spectral localization. Thirdly we prove a Thouless formula and compute the mean Lyapunov exponent which is independent of M.Comment: 29 pages, 1 figure. New section added in which simplicity of the Lyapunov spectrum and finiteness of the localization length are proven. To appear in Annales Henri Poincar

    Localization for Random Unitary Operators

    Full text link
    We consider unitary analogs of 11-dimensional Anderson models on l2(Z)l^2(\Z) defined by the product Uω=DωSU_\omega=D_\omega S where SS is a deterministic unitary and DωD_\omega is a diagonal matrix of i.i.d. random phases. The operator SS is an absolutely continuous band matrix which depends on a parameter controlling the size of its off-diagonal elements. We prove that the spectrum of UωU_\omega is pure point almost surely for all values of the parameter of SS. We provide similar results for unitary operators defined on l2(N)l^2(\N) together with an application to orthogonal polynomials on the unit circle. We get almost sure localization for polynomials characterized by Verblunski coefficients of constant modulus and correlated random phases

    Towards Deconstruction of the Type D (2,0) Theory

    Get PDF
    We propose a four-dimensional supersymmetric theory that deconstructs, in a particular limit, the six-dimensional (2,0)(2,0) theory of type DkD_k. This 4d theory is defined by a necklace quiver with alternating gauge nodes O(2k)\mathrm{O}(2k) and Sp(k)\mathrm{Sp}(k). We test this proposal by comparing the 6d half-BPS index to the Higgs branch Hilbert series of the 4d theory. In the process, we overcome several technical difficulties, such as Hilbert series calculations for non-complete intersections, and the choice of O\mathrm{O} versus SO\mathrm{SO} gauge groups. Consistently, the result matches the Coulomb branch formula for the mirror theory upon reduction to 3d

    Fractional Moment Estimates for Random Unitary Operators

    Full text link
    We consider unitary analogs of dd-dimensional Anderson models on l2(Zd)l^2(\Z^d) defined by the product Uω=DωSU_\omega=D_\omega S where SS is a deterministic unitary and DωD_\omega is a diagonal matrix of i.i.d. random phases. The operator SS is an absolutely continuous band matrix which depends on parameters controlling the size of its off-diagonal elements. We adapt the method of Aizenman-Molchanov to get exponential estimates on fractional moments of the matrix elements of Uω(Uωz)1U_\omega(U_\omega -z)^{-1}, provided the distribution of phases is absolutely continuous and the parameters correspond to small off-diagonal elements of SS. Such estimates imply almost sure localization for UωU_\omega

    Can biological quantum networks solve NP-hard problems?

    Full text link
    There is a widespread view that the human brain is so complex that it cannot be efficiently simulated by universal Turing machines. During the last decades the question has therefore been raised whether we need to consider quantum effects to explain the imagined cognitive power of a conscious mind. This paper presents a personal view of several fields of philosophy and computational neurobiology in an attempt to suggest a realistic picture of how the brain might work as a basis for perception, consciousness and cognition. The purpose is to be able to identify and evaluate instances where quantum effects might play a significant role in cognitive processes. Not surprisingly, the conclusion is that quantum-enhanced cognition and intelligence are very unlikely to be found in biological brains. Quantum effects may certainly influence the functionality of various components and signalling pathways at the molecular level in the brain network, like ion ports, synapses, sensors, and enzymes. This might evidently influence the functionality of some nodes and perhaps even the overall intelligence of the brain network, but hardly give it any dramatically enhanced functionality. So, the conclusion is that biological quantum networks can only approximately solve small instances of NP-hard problems. On the other hand, artificial intelligence and machine learning implemented in complex dynamical systems based on genuine quantum networks can certainly be expected to show enhanced performance and quantum advantage compared with classical networks. Nevertheless, even quantum networks can only be expected to efficiently solve NP-hard problems approximately. In the end it is a question of precision - Nature is approximate.Comment: 38 page

    Filicide in Austria and Finland - A register-based study on all filicide cases in Austria and Finland 1995-2005

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Filicide is the tragic crime of murdering one's own child. Previous research has found that the offending parents are commonly depressed and that suicide is often associated as an actual act or an intention. Yet, filicide is an underreported crime and previous studies have been strained with methodological problems. No comprehensive international studies on filicide have been presented in the literature until now.</p> <p>Methods</p> <p>This was a descriptive, comprehensive, register-based study of all filicides in Austria and Finland during 1995-2005. Filicide-suicide cases were also included.</p> <p>Results</p> <p>Most of the perpetrators were the biological mothers; in Austria 72%, in Finland 52%. Suicide followed filicide either as an attempt or a fulfilled act in 32% and 54% of the cases in Austria and Finland, respectively. Psychotic mood disorders were diagnosed for 10% of the living perpetrators in Austria, and 12% in Finland. Non-psychotic depression was diagnosed in 9% of surviving perpetrators in Austria, 35% in Finland.</p> <p>Conclusion</p> <p>The data from the two countries demonstrated that filicide is such a multifaceted and rare phenomenon that national data from individual countries seldom offer sufficient scope for its thorough study. Further analyses are needed to produce a complete picture of filicide.</p

    Quiver gauge theories: beyond reflexivity

    Get PDF
    Reflexive polygons have been extensively studied in a variety of contexts in mathematics and physics. We generalize this programme by looking at the 45 different lattice polygons with two interior points up to SL(2,ℤ) equivalence. Each corresponds to some affine toric 3-fold as a cone over a Sasaki-Einstein 5-fold. We study the quiver gauge theories of D3-branes probing these cones, which coincide with the mesonic moduli space. The minimum of the volume function of the Sasaki-Einstein base manifold plays an important role in computing the R-charges. We analyze these minimized volumes with respect to the topological quantities of the compact surfaces constructed from the polygons. Unlike reflexive polytopes, one can have two fans from the two interior points, and hence give rise to two smooth varieties after complete resolutions, leading to an interesting pair of closely related geometries and gauge theories
    corecore