Abstract

We consider unitary analogs of 11-dimensional Anderson models on l2(Z)l^2(\Z) defined by the product Uω=DωSU_\omega=D_\omega S where SS is a deterministic unitary and DωD_\omega is a diagonal matrix of i.i.d. random phases. The operator SS is an absolutely continuous band matrix which depends on a parameter controlling the size of its off-diagonal elements. We prove that the spectrum of UωU_\omega is pure point almost surely for all values of the parameter of SS. We provide similar results for unitary operators defined on l2(N)l^2(\N) together with an application to orthogonal polynomials on the unit circle. We get almost sure localization for polynomials characterized by Verblunski coefficients of constant modulus and correlated random phases

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 23/03/2019