3,148 research outputs found

    Totally Asymmetric Exclusion Process with Hierarchical Long-Range Connections

    Full text link
    A non-equilibrium particle transport model, the totally asymmetric exclusion process, is studied on a one-dimensional lattice with a hierarchy of fixed long-range connections. This model breaks the particle-hole symmetry observed on an ordinary one-dimensional lattice and results in a surprisingly simple phase diagram, without a maximum-current phase. Numerical simulations of the model with open boundary conditions reveal a number of dynamic features and suggest possible applications.Comment: 10 pages, revtex4, reorganized, with some new analytical results. For related articles, see http://www.physics.emory.edu/faculty/boettcher

    Extremal Optimization at the Phase Transition of the 3-Coloring Problem

    Full text link
    We investigate the phase transition of the 3-coloring problem on random graphs, using the extremal optimization heuristic. 3-coloring is among the hardest combinatorial optimization problems and is closely related to a 3-state anti-ferromagnetic Potts model. Like many other such optimization problems, it has been shown to exhibit a phase transition in its ground state behavior under variation of a system parameter: the graph's mean vertex degree. This phase transition is often associated with the instances of highest complexity. We use extremal optimization to measure the ground state cost and the ``backbone'', an order parameter related to ground state overlap, averaged over a large number of instances near the transition for random graphs of size nn up to 512. For graphs up to this size, benchmarks show that extremal optimization reaches ground states and explores a sufficient number of them to give the correct backbone value after about O(n3.5)O(n^{3.5}) update steps. Finite size scaling gives a critical mean degree value αc=4.703(28)\alpha_{\rm c}=4.703(28). Furthermore, the exploration of the degenerate ground states indicates that the backbone order parameter, measuring the constrainedness of the problem, exhibits a first-order phase transition.Comment: RevTex4, 8 pages, 4 postscript figures, related information available at http://www.physics.emory.edu/faculty/boettcher

    Low-Temperature Excitations of Dilute Lattice Spin Glasses

    Full text link
    A new approach to exploring low-temperature excitations in finite-dimensional lattice spin glasses is proposed. By focusing on bond-diluted lattices just above the percolation threshold, large system sizes LL can be obtained which lead to enhanced scaling regimes and more accurate exponents. Furthermore, this method in principle remains practical for any dimension, yielding exponents that so far have been elusive. This approach is demonstrated by determining the stiffness exponent for dimensions d=3d=3, d=6d=6 (the upper critical dimension), and d=7d=7. Key is the application of an exact reduction algorithm, which eliminates a large fraction of spins, so that the reduced lattices never exceed ∌103\sim10^3 variables for sizes as large as L=30 in d=3d=3, L=9 in d=6d=6, or L=8 in d=7d=7. Finite size scaling analysis gives y3=0.24(1)y_3=0.24(1) for d=3d=3, significantly improving on previous work. The results for d=6d=6 and d=7d=7, y6=1.1(1)y_6=1.1(1) and y7=1.24(5)y_7=1.24(5), are entirely new and are compared with mean-field predictions made for d>=6.Comment: 7 pages, LaTex, 7 ps-figures included, added result for stiffness in d=7, as to appear in Europhysics Letters (see http://www.physics.emory.edu/faculty/boettcher/ for related information

    Jamming Model for the Extremal Optimization Heuristic

    Full text link
    Extremal Optimization, a recently introduced meta-heuristic for hard optimization problems, is analyzed on a simple model of jamming. The model is motivated first by the problem of finding lowest energy configurations for a disordered spin system on a fixed-valence graph. The numerical results for the spin system exhibit the same phenomena found in all earlier studies of extremal optimization, and our analytical results for the model reproduce many of these features.Comment: 9 pages, RevTex4, 7 ps-figures included, as to appear in J. Phys. A, related papers available at http://www.physics.emory.edu/faculty/boettcher

    d_c=4 is the upper critical dimension for the Bak-Sneppen model

    Full text link
    Numerical results are presented indicating d_c=4 as the upper critical dimension for the Bak-Sneppen evolution model. This finding agrees with previous theoretical arguments, but contradicts a recent Letter [Phys. Rev. Lett. 80, 5746-5749 (1998)] that placed d_c as high as d=8. In particular, we find that avalanches are compact for all dimensions d<=4, and are fractal for d>4. Under those conditions, scaling arguments predict a d_c=4, where hyperscaling relations hold for d<=4. Other properties of avalanches, studied for 1<=d<=6, corroborate this result. To this end, an improved numerical algorithm is presented that is based on the equivalent branching process.Comment: 4 pages, RevTex4, as to appear in Phys. Rev. Lett., related papers available at http://userwww.service.emory.edu/~sboettc

    Extremal Optimization for Graph Partitioning

    Full text link
    Extremal optimization is a new general-purpose method for approximating solutions to hard optimization problems. We study the method in detail by way of the NP-hard graph partitioning problem. We discuss the scaling behavior of extremal optimization, focusing on the convergence of the average run as a function of runtime and system size. The method has a single free parameter, which we determine numerically and justify using a simple argument. Our numerical results demonstrate that on random graphs, extremal optimization maintains consistent accuracy for increasing system sizes, with an approximation error decreasing over runtime roughly as a power law t^(-0.4). On geometrically structured graphs, the scaling of results from the average run suggests that these are far from optimal, with large fluctuations between individual trials. But when only the best runs are considered, results consistent with theoretical arguments are recovered.Comment: 34 pages, RevTex4, 1 table and 20 ps-figures included, related papers available at http://www.physics.emory.edu/faculty/boettcher

    Graphene on ferromagnetic surfaces and its functionalization with water and ammonia

    Get PDF
    Here we present an angle-resolved photoelectron spectroscopy (ARPES), x-ray absorption spec-troscopy (XAS), and density-functional theory (DFT) investigations of water and ammonia ad-sorption on graphene/Ni(111). Our results on graphene/Ni(111) reveal the existence of interface states, originating from the strong hybridization of the graphene {\pi} and spin-polarized Ni 3d valence band states. ARPES and XAS data of the H2O (NH3)/graphene/Ni(111) system give an information about the kind of interaction between adsorbed molecules and graphene on Ni(111). The presented experimental data are compared with the results obtained in the framework of the DFT approach.Comment: accepted in Nanoscale Research Letters; 16 pages, 4 figures, 2 table

    Obtaining Stiffness Exponents from Bond-diluted Lattice Spin Glasses

    Full text link
    Recently, a method has been proposed to obtain accurate predictions for low-temperature properties of lattice spin glasses that is practical even above the upper critical dimension, dc=6d_c=6. This method is based on the observation that bond-dilution enables the numerical treatment of larger lattices, and that the subsequent combination of such data at various bond densities into a finite-size scaling Ansatz produces more robust scaling behavior. In the present study we test the potential of such a procedure, in particular, to obtain the stiffness exponent for the hierarchical Migdal-Kadanoff lattice. Critical exponents for this model are known with great accuracy and any simulations can be executed to very large lattice sizes at almost any bond density, effecting a insightful comparison that highlights the advantages -- as well as the weaknesses -- of this method. These insights are applied to the Edwards-Anderson model in d=3d=3 with Gaussian bonds.Comment: corrected version, 10 pages, RevTex4, 12 ps-figures included; related papers available a http://www.physics.emory.edu/faculty/boettcher

    Extended duration orbiter medical project countermeasure to reduce post space flight orthostatic intolerance (LBNP) (STS-50/USML-1)

    Get PDF
    During the STS-50/USML-1 mission and five other Shuttle flights, decompression of the legs and lower abdomen ('lower body negative pressure,' LBNP) was used: (1) to apply a standardized stress to the cardiovascular system, to document the loss of orthostatic function during an extended period in weightlessness, and (2) to test its efficacy as a treatment which may be used to protect astronauts from gravitationally-induced fainting during and after reentry on Space Shuttle flights. The loss of orthostatic tolerance (as determined by LBNP) occured even earlier than indicated by similar testing on Skylab (1973-1974). The treatment was shown to be effective in reversing some of the effects of extended weightlessness on the cardiovascular system for at least one day after treatment

    Condensation transition in a model with attractive particles and non-local hops

    Full text link
    We study a one dimensional nonequilibrium lattice model with competing features of particle attraction and non-local hops. The system is similar to a zero range process (ZRP) with attractive particles but the particles can make both local and non-local hops. The length of the non-local hop is dependent on the occupancy of the chosen site and its probability is given by the parameter pp. Our numerical results show that the system undergoes a phase transition from a condensate phase to a homogeneous density phase as pp is increased beyond a critical value pcp_c. A mean-field approximation does not predict a phase transition and describes only the condensate phase. We provide heuristic arguments for understanding the numerical results.Comment: 11 Pages, 6 Figures. Published in Journal of Statistical Mechanics: Theory and Experimen
    • 

    corecore