We study a one dimensional nonequilibrium lattice model with competing
features of particle attraction and non-local hops. The system is similar to a
zero range process (ZRP) with attractive particles but the particles can make
both local and non-local hops. The length of the non-local hop is dependent on
the occupancy of the chosen site and its probability is given by the parameter
p. Our numerical results show that the system undergoes a phase transition
from a condensate phase to a homogeneous density phase as p is increased
beyond a critical value pc. A mean-field approximation does not predict a
phase transition and describes only the condensate phase. We provide heuristic
arguments for understanding the numerical results.Comment: 11 Pages, 6 Figures. Published in Journal of Statistical Mechanics:
Theory and Experimen