Recently, a method has been proposed to obtain accurate predictions for
low-temperature properties of lattice spin glasses that is practical even above
the upper critical dimension, dc=6. This method is based on the observation
that bond-dilution enables the numerical treatment of larger lattices, and that
the subsequent combination of such data at various bond densities into a
finite-size scaling Ansatz produces more robust scaling behavior. In the
present study we test the potential of such a procedure, in particular, to
obtain the stiffness exponent for the hierarchical Migdal-Kadanoff lattice.
Critical exponents for this model are known with great accuracy and any
simulations can be executed to very large lattice sizes at almost any bond
density, effecting a insightful comparison that highlights the advantages -- as
well as the weaknesses -- of this method. These insights are applied to the
Edwards-Anderson model in d=3 with Gaussian bonds.Comment: corrected version, 10 pages, RevTex4, 12 ps-figures included; related
papers available a http://www.physics.emory.edu/faculty/boettcher