research

Extremal Optimization at the Phase Transition of the 3-Coloring Problem

Abstract

We investigate the phase transition of the 3-coloring problem on random graphs, using the extremal optimization heuristic. 3-coloring is among the hardest combinatorial optimization problems and is closely related to a 3-state anti-ferromagnetic Potts model. Like many other such optimization problems, it has been shown to exhibit a phase transition in its ground state behavior under variation of a system parameter: the graph's mean vertex degree. This phase transition is often associated with the instances of highest complexity. We use extremal optimization to measure the ground state cost and the ``backbone'', an order parameter related to ground state overlap, averaged over a large number of instances near the transition for random graphs of size nn up to 512. For graphs up to this size, benchmarks show that extremal optimization reaches ground states and explores a sufficient number of them to give the correct backbone value after about O(n3.5)O(n^{3.5}) update steps. Finite size scaling gives a critical mean degree value αc=4.703(28)\alpha_{\rm c}=4.703(28). Furthermore, the exploration of the degenerate ground states indicates that the backbone order parameter, measuring the constrainedness of the problem, exhibits a first-order phase transition.Comment: RevTex4, 8 pages, 4 postscript figures, related information available at http://www.physics.emory.edu/faculty/boettcher

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020