229 research outputs found

    Oriented Adsorption of Benzene Molecules on Graphitized Carbon Black

    Get PDF
    A new model for the oriented adsorption of benzene molecules on graphitized carbon black at low temperatures is proposed which explains NMR relaxation data. © 1976, Verlag der Zeitschrift für Naturforschung. All rights reserved

    Improved Characterization of the Astrophysical Muon–neutrino Flux with 9.5 Years of IceCube Data

    Get PDF
    We present a measurement of the high-energy astrophysical muon–neutrino flux with the IceCube Neutrino Observatory. The measurement uses a high-purity selection of 650k neutrino-induced muon tracks from the northern celestial hemisphere, corresponding to 9.5 yr of experimental data. With respect to previous publications, the measurement is improved by the increased size of the event sample and the extended model testing beyond simple power-law hypotheses. An updated treatment of systematic uncertainties and atmospheric background fluxes has been implemented based on recent models. The best-fit single power-law parameterization for the astrophysical energy spectrum results in a normalization of ϕ@100TeVνμ+νˉμ=1.440.26+0.25×1018GeV1cm2s1sr1{\phi }_{@100\mathrm{TeV}}^{{\nu }_{\mu }+{\bar{\nu }}_{\mu }}={1.44}_{-0.26}^{+0.25}\times {10}^{-18}\,{\mathrm{GeV}}^{-1}{\mathrm{cm}}^{-2}{{\rm{s}}}^{-1}{\mathrm{sr}}^{-1} and a spectral index γSPL=2.370.09+0.09{\gamma }_{\mathrm{SPL}}={2.37}_{-0.09}^{+0.09}, constrained in the energy range from 15 TeV to 5 PeV. The model tests include a single power law with a spectral cutoff at high energies, a log-parabola model, several source-class-specific flux predictions from the literature, and a model-independent spectral unfolding. The data are consistent with a single power-law hypothesis, however, spectra with softening above one PeV are statistically more favorable at a two-sigma level

    Search for neutrino emission from cores of active galactic nuclei

    Get PDF
    The sources of the majority of the high-energy astrophysical neutrinos observed with the IceCube neutrino telescope at the South Pole are unknown. So far, only a flaring gamma-ray blazar was compellingly associated with the emission of high-energy neutrinos. However, several studies suggest that the neutrino emission from the gamma-ray blazar population only accounts for a small fraction of the total astrophysical neutrino flux. In this work we probe the production of high-energy neutrinos in the cores of active galactic nuclei (AGN), induced by accelerated cosmic rays in the accretion disk region. We present a likelihood analysis based on eight years of IceCube data, searching for a cumulative neutrino signal from three AGN samples created for this work. The neutrino emission is assumed to be proportional to the accretion disk luminosity estimated from the soft x-ray flux. Next to the observed soft x-ray flux, the objects for the three samples have been selected based on their radio emission and infrared color properties. For the largest sample in this search, an excess of high-energy neutrino events with respect to an isotropic background of atmospheric and astrophysical neutrinos is found, corresponding to a post-trial significance of 2.60σ. If interpreted as a genuine signal with the assumptions of a proportionality of x-ray and neutrino fluxes and a model for the subthreshold flux distribution, then this observation implies that at 100 TeV, 27%–100% of the observed neutrinos arise from particle acceleration in the core of AGN at 1σ confidence interval

    Improved Characterization of the Astrophysical Muon–neutrino Flux with 9.5 Years of IceCube Data

    Get PDF
    We present a measurement of the high-energy astrophysical muon–neutrino flux with the IceCube Neutrino Observatory. The measurement uses a high-purity selection of 650k neutrino-induced muon tracks from the northern celestial hemisphere, corresponding to 9.5 yr of experimental data. With respect to previous publications, the measurement is improved by the increased size of the event sample and the extended model testing beyond simple power-law hypotheses. An updated treatment of systematic uncertainties and atmospheric background fluxes has been implemented based on recent models. The best-fit single power-law parameterization for the astrophysical energy spectrum results in a normalization of ϕ@100TeVνμ+νˉμ=1.440.26+0.25×1018GeV1cm2s1sr1{\phi }_{@100\mathrm{TeV}}^{{\nu }_{\mu }+{\bar{\nu }}_{\mu }}={1.44}_{-0.26}^{+0.25}\times {10}^{-18}\,{\mathrm{GeV}}^{-1}{\mathrm{cm}}^{-2}{{\rm{s}}}^{-1}{\mathrm{sr}}^{-1} and a spectral index γSPL=2.370.09+0.09{\gamma }_{\mathrm{SPL}}={2.37}_{-0.09}^{+0.09}, constrained in the energy range from 15 TeV to 5 PeV. The model tests include a single power law with a spectral cutoff at high energies, a log-parabola model, several source-class-specific flux predictions from the literature, and a model-independent spectral unfolding. The data are consistent with a single power-law hypothesis, however, spectra with softening above one PeV are statistically more favorable at a two-sigma level

    Search for High-energy Neutrino Emission from Galactic X-Ray Binaries with IceCube

    Get PDF
    We present the first comprehensive search for high-energy neutrino emission from high- and low-mass X-ray binaries conducted by IceCube. Galactic X-ray binaries are long-standing candidates for the source of Galactic hadronic cosmic rays and neutrinos. The compact object in these systems can be the site of cosmic-ray acceleration, and neutrinos can be produced by interactions of cosmic rays with radiation or gas, in the jet of a microquasar, in the stellar wind, or in the atmosphere of the companion star. We study X-ray binaries using 7.5 yr of IceCube data with three separate analyses. In the first, we search for periodic neutrino emission from 55 binaries in the Northern Sky with known orbital periods. In the second, the X-ray light curves of 102 binaries across the entire sky are used as templates to search for time-dependent neutrino emission. Finally, we search for time-integrated emission of neutrinos for a list of 4 notable binaries identified as microquasars. In the absence of a significant excess, we place upper limits on the neutrino flux for each hypothesis and compare our results with theoretical predictions for several binaries. In addition, we evaluate the sensitivity of the next generation neutrino telescope at the South Pole, IceCube-Gen2, and demonstrate its power to identify potential neutrino emission from these binary sources in the Galaxy

    Search for Quantum Gravity Using Astrophysical Neutrino Flavour with IceCube

    Full text link
    Along their long propagation from production to detection, neutrino states undergo quantum interference which converts their types, or flavours. High-energy astrophysical neutrinos, first observed by the IceCube Neutrino Observatory, are known to propagate unperturbed over a billion light years in vacuum. These neutrinos act as the largest quantum interferometer and are sensitive to the smallest effects in vacuum due to new physics. Quantum gravity (QG) aims to describe gravity in a quantum mechanical framework, unifying matter, forces and space-time. QG effects are expected to appear at the ultra-high-energy scale known as the Planck energy, EP1.22×1019E_{P}\equiv 1.22\times 10^{19}~giga-electronvolts (GeV). Such a high-energy universe would have existed only right after the Big Bang and it is inaccessible by human technologies. On the other hand, it is speculated that the effects of QG may exist in our low-energy vacuum, but are suppressed by the Planck energy as EP1E_{P}^{-1} (1019\sim 10^{-19}~GeV1^{-1}), EP2E_{P}^{-2} (1038\sim 10^{-38}~GeV2^{-2}), or its higher powers. The coupling of particles to these effects is too small to measure in kinematic observables, but the phase shift of neutrino waves could cause observable flavour conversions. Here, we report the first result of neutrino interferometry~\cite{Aartsen:2017ibm} using astrophysical neutrino flavours to search for new space-time structure. We did not find any evidence of anomalous flavour conversion in IceCube astrophysical neutrino flavour data. We place the most stringent limits of any known technologies, down to 104210^{-42}~GeV2^{-2}, on the dimension-six operators that parameterize the space-time defects for preferred astrophysical production scenarios. For the first time, we unambiguously reach the signal region of quantum-gravity-motivated physics.Comment: The main text is 7 pages with 3 figures and 1 table. The Appendix includes 5 pages with 3 figure

    Search for Relativistic Magnetic Monopoles with Eight Years of IceCube Data

    Get PDF
    We present an all-sky 90% confidence level upper limit on the cosmic flux of relativistic magnetic monopoles using 2886 days of IceCube data. The analysis was optimized for monopole speeds between 0.750c and 0.995c, without any explicit restriction on the monopole mass. We constrain the flux of relativistic cosmic magnetic monopoles to a level below 2.0×1019^{-19} cm2^{-2}  s1^{-1} sr1^{-1} over the majority of the targeted speed range. This result constitutes the most strict upper limit to date for magnetic monopoles with β≳0.8 and up to β∼0.995 and fills the gap between existing limits on the cosmic flux of nonrelativistic and ultrarelativistic magnetic monopoles

    New Flux Limits in the Low Relativistic Regime for Magnetic Monopoles at IceCube

    Get PDF
    Magnetic monopoles are hypothetical particles that carry magnetic charge. Depending on their velocity, different light production mechanisms exist to facilitate detection. In this work, a previously unused light production mechanism, luminescence of ice, is introduced. This light production mechanism is nearly independent of the velocity of the incident magnetic monopole and becomes the only viable light production mechanism in the low relativistic regime (0.1-0.55c). An analysis in the low relativistic regime searching for magnetic monopoles in seven years of IceCube data is presented. While no magnetic monopole detection can be claimed, a new flux limit in the low relativistic regime is presented, superseding the previous best flux limit by 2 orders of magnitude

    Combining Maximum-Likelihood with Deep Learning for Event Reconstruction in IceCube

    Get PDF
    The field of deep learning has become increasingly important for particle physics experiments, yielding a multitude of advances, predominantly in event classification and reconstruction tasks. Many of these applications have been adopted from other domains. However, data in the field of physics are unique in the context of machine learning, insofar as their generation process and the laws and symmetries they abide by are usually well understood. Most commonly used deep learning architectures fail at utilizing this available information. In contrast, more traditional likelihood-based methods are capable of exploiting domain knowledge, but they are often limited by computational complexity. In this contribution, a hybrid approach is presented that utilizes generative neural networks to approximate the likelihood, which may then be used in a traditional maximum-likelihood setting. Domain knowledge, such as invariances and detector characteristics, can easily be incorporated in this approach. The hybrid approach is illustrated by the example of event reconstruction in IceCube

    Design of a Robust Fiber Optic Communications System for Future IceCube Detectors

    Get PDF
    In this work we discuss ongoing development of a hybrid fiber/copper data and timing infrastructure for the future IceCube-Gen2 detector. The IceCube Neutrino Observatory is a kilometer-scale detector operating with 86 strings of modules. These modules communicate utilizing a custom protocol to mitigate the signaling challenges of long distance copper cables. Moving past the limitations of a copper-based backbone will allow larger future IceCube detectors with extremely precise timing and a large margin of excess throughput to accommodate innovative future modules. To this end, the upcoming IceCube Upgrade offers an opportunity to deploy a pathfinder for the new fiber optic infrastructure, called the Fiber Test System. This design draws on experience from AMANDA and IceCube and incorporates recently matured technologies such as ruggedized fibers and White Rabbit timing to deliver robust and high-performance data and timing transfer
    corecore