239 research outputs found
Perlecan Maintains microvessel integrity in vivo and modulates their formation in vitro
Perlecan is a heparan sulfate proteoglycan assembled into the vascular basement membranes (BMs) during vasculogenesis. In the present study we have investigated vessel formation in mice, teratomas and embryoid bodies (EBs) in the absence of perlecan. We found that perlecan was dispensable for blood vessel formation and maturation until embryonic day (E) 12.5. At later stages of development 40% of mutant embryos showed dilated microvessels in brain and skin, which ruptured and led to severe bleedings. Surprisingly, teratomas derived from perlecan-null ES cells showed efficient contribution of perlecan-deficient endothelial cells to an apparently normal tumor vasculature. However, in perlecan-deficient EBs the area occupied by an endothelial network and the number of vessel branches were significantly diminished. Addition of FGF-2 but not VEGF165 rescued the in vitro deficiency of the mutant ES cells. Furthermore, in the absence of perlecan in the EB matrix lower levels of FGFs are bound, stored and available for cell surface presentation. Altogether these findings suggest that perlecan supports the maintenance of brain and skin subendothelial BMs and promotes vasculo- and angiogenesis by modulating FGF-2 function
Sleep apnea and ischemic stroke- a perspective for translational preclinical modelling
Obstructive sleep apnea (OSA) is associated with ischemic stroke. There is, however, a lack of knowledge on the exact cause-effect relationship, and preclinical models of OSA for experimental ischemic stroke investigations are not well characterized. In this review, we discuss sleep apnea and its relationship with stroke risk factors. We consider how OSA may lead to ischemic stroke and how OSA-induced metabolic syndrome and hypothalamic-pituitary axis (HPA) dysfunction could serve as therapeutic targets to prevent ischemic stroke. Further, we examine the translational potential of established preclinical models of OSA. We conclude that metabolic syndrome and HPA dysfunction, which are often overlooked in the context of experimental stroke and OSA studies, are crucial for experimental consideration to improve the body of knowledge as well as the translational potential of investigative efforts
Contextualizing legal norms: a multi-dimensional view of the 2014 legal capital reform in China
This paper intends to shed light on the contentious theme of the reception of legal transplantation in the host environment, by examining the 2014 legislative reform of legal capital in China, which at least on paper imitates the enabling settings of US Revised Model Business Corporation Act (RMBCA). The paper looks at the interconnections between national-specific contextual elements, the resultant complexities, and the spillover effects of transplanted configurations in the unique Chinese socio-cultural setting, implicating the discrepancy between the ‘law in practice’ and the borrowed words ‘on the books’, and suggesting the importance of gaining a holistic understanding of ‘law’ involving the legal traditions in both the donor country and the recipient nation
Diagnostic Journey in the Recognition of Oncogenic Osteomalacia
A 73-year-old woman with a remote history of successfully treated primary hyperparathyroidism was referred to our office because of multiple skeletal fractures and proximal muscle weakness. Prior laboratory evaluation demonstrated hypocalcemia, vitamin D deficiency, elevated PTH, and elevated alkaline phosphatase. Updated evaluation in our clinic additionally showed hypophosphatemia prompting measurement of serum fibroblast growth factor 23 (FGF23). FGF23 proved to be markedly elevated prompting consideration of tumor-induced osteomalacia. Positron emission tomography with Cu-64 oxodotreotide revealed an enhancing focus in the left thoracic spine that was confirmed on magnetic resonance imaging to be a 1.5-cm extradural mass. The patient underwent surgical resection of the mass by the neurosurgery spine service. Pathologic analysis demonstrated a 2.4-cm mesenchymal tumor; mRNA in situ hybridization was positive for FGF23. Laboratory studies 12 weeks postoperatively showed near normalization of the serum FGF23 as well as improvement in her other metabolic abnormalities and clinical symptomatology. This case exemplifies the necessity of measurement of serum inorganic phosphate and a high level of suspicion for hypophosphatemic osteomalacia in patients with numerous fractures beyond that expected for their degree of osteoporosis
Myc-induced nuclear antigen constrains a latent intestinal epithelial cell-intrinsic anthelmintic pathway
<div><p>Expulsion of parasitic gastrointestinal nematodes requires diverse effector mechanisms coordinated by a Th2-type response. The evolutionarily conserved JmjC protein; Myc Induced Nuclear Antigen (Mina) has been shown to repress IL4, a key Th2 cytokine, suggesting Mina may negatively regulate nematode expulsion. Here we report that expulsion of the parasitic nematode <i>Trichuris muris</i> was indeed accelerated in Mina deficient mice. Unexpectedly, this was associated not with an elevated Th2- but rather an impaired Th1-type response. Further reciprocal bone marrow chimera and conditional KO experiments demonstrated that retarded parasite expulsion and a normal Th1-type response both required Mina in intestinal epithelial cells (IECs). Transcriptional profiling experiments in IECs revealed anti-microbial α-defensin peptides to be the major target of Mina-dependent retention of worms in infected mice. In vitro exposure to recombinant α-defensin peptides caused cytotoxic damage to whipworms. These results identify a latent IEC-intrinsic anthelmintic pathway actively constrained by Mina and point to α-defensins as important effectors that together with Mina may be attractive therapeutic targets for the control of nematode infection.</p></div
Legal Facts and Reasons for Action: Between Deflationary and Robust Conceptions of Law’s Reason-Giving Capacity
This chapter considers whether legal requirements can constitute reasons for action independently of the merits of the requirement at hand. While jurisprudential opinion on this question is far from uniform, sceptical views are becoming increasingly dominant. Such views typically contend that, while the law can be indicative of pre-existing reasons, or can trigger pre-existing reasons into operation, it cannot constitute new reasons. This chapter offers support to a somewhat less sceptical position, according to which the fact that a legal requirement has been issued can be a reason for action, yet one that is underpinned by bedrock values which law is apt to serve. Notions discussed here include a value-based conception of reasons as facts ; a distinction between complete and incomplete reasons ; and David Enoch’s idea of triggering reason-giving. Following a discussion of criticism against the view adopted here, the chapter concludes by considering some more ‘robust’ conceptions of law’s reason-giving capacity
Mouse Adapted SARS-CoV-2 (MA10) Viral Infection Induces Neuroinflammation in Standard Laboratory Mice
Increasing evidence suggests that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection impacts neurological function both acutely and chronically, even in the absence of pronounced respiratory distress. Developing clinically relevant laboratory mouse models of the neuropathogenesis of SARS-CoV-2 infection is an important step toward elucidating the underlying mechanisms of SARS-CoV-2-induced neurological dysfunction. Although various transgenic models and viral delivery methods have been used to study the infection potential of SARS-CoV-2 in mice, the use of commonly available laboratory mice would facilitate the study of SARS-CoV-2 neuropathology. Herein we show neuroinflammatory profiles of immunologically intact mice, C57BL/6J and BALB/c, as well as immunodeficient (Rag2−/−) mice, to a mouse-adapted strain of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2 (MA10)). Our findings indicate that brain IL-6 levels are significantly higher in BALB/c male mice infected with SARS-CoV-2 MA10. Additionally, blood-brain barrier integrity, as measured by the vascular tight junction protein claudin-5, was reduced by SARS-CoV-2 MA10 infection in all three strains. Brain glial fibrillary acidic protein (GFAP) mRNA was also elevated in male C57BL/6J infected mice compared with the mock group. Lastly, immune-vascular effects of SARS-CoV-2 (MA10), as measured by H&E scores, demonstrate an increase in perivascular lymphocyte cuffing (PLC) at 30 days post-infection among infected female BALB/c mice with a significant increase in PLC over time only in SARS-CoV-2 MA10) infected mice. Our study is the first to demonstrate that SARS-CoV-2 (MA10) infection induces neuroinflammation in laboratory mice and could be used as a novel model to study SARS-CoV-2-mediated cerebrovascular pathology
Dual DNA Methylation Patterns in the CNS Reveal Developmentally Poised Chromatin and Monoallelic Expression of Critical Genes
As a first step towards discovery of genes expressed from only one allele in the CNS, we used a tiling array assay for DNA sequences that are both methylated and unmethylated (the MAUD assay). We analyzed regulatory regions of the entire mouse brain transcriptome, and found that approximately 10% of the genes assayed showed dual DNA methylation patterns. They include a large subset of genes that display marks of both active and silent, i.e., poised, chromatin during development, consistent with a link between differential DNA methylation and lineage-specific differentiation within the CNS. Sixty-five of the MAUD hits and 57 other genes whose function is of relevance to CNS development and/or disorders were tested for allele-specific expression in F1 hybrid clonal neural stem cell (NSC) lines. Eight MAUD hits and one additional gene showed such expression. They include Lgi1, which causes a subtype of inherited epilepsy that displays autosomal dominance with incomplete penetrance; Gfra2, a receptor for glial cell line-derived neurotrophic factor GDNF that has been linked to kindling epilepsy; Unc5a, a netrin-1 receptor important in neurodevelopment; and Cspg4, a membrane chondroitin sulfate proteoglycan associated with malignant melanoma and astrocytoma in human. Three of the genes, Camk2a, Kcnc4, and Unc5a, show preferential expression of the same allele in all clonal NSC lines tested. The other six genes show a stochastic pattern of monoallelic expression in some NSC lines and bi-allelic expression in others. These results support the estimate that 1–2% of genes expressed in the CNS may be subject to allelic exclusion, and demonstrate that the group includes genes implicated in major disorders of the CNS as well as neurodevelopment
Soluble perlecan domain i enhances vascular endothelial growth factor-165 activity and receptor phosphorylation in human bone marrow endothelial cells
<p>Abstract</p> <p>Background</p> <p>Immobilized recombinant perlecan domain I (PlnDI) binds and modulates the activity of heparin-binding growth factors, <it>in vitro</it>. However, activities for PlnDI, in solution, have not been reported. In this study, we assessed the ability of soluble forms to modulate vascular endothelial growth factor-165 (VEGF<sub>165</sub>) enhanced capillary tube-like formation, and VEGF receptor-2 phosphorylation of human bone marrow endothelial cells, <it>in vitro</it>.</p> <p>Results</p> <p>In solution, PlnDI binds VEGF<sub>165 </sub>in a heparan sulfate and pH dependent manner. Capillary tube-like formation is enhanced by exogenous PlnDI; however, PlnDI/VEGF<sub>165 </sub>mixtures combine to enhance formation beyond that stimulated by either PlnDI or VEGF<sub>165 </sub>alone. PlnDI also stimulates VEGF receptor-2 phosphorylation, and mixtures of PlnDI/VEGF<sub>165 </sub>reduce the time required for peak VEGF receptor-2 phosphorylation (Tyr-951), and increase Akt phosphorylation. PlnDI binds both immobilized neuropilin-1 and VEGF receptor-2, but has a greater affinity for neuropilin-1. PlnDI binding to neuropilin-1, but not to VEGF receptor-2 is dependent upon the heparan sulfate chains adorning PlnDI. Interestingly, the presence of VEGF<sub>165 </sub>but not VEGF<sub>121 </sub>significantly enhances PlnDI binding to Neuropilin-1 and VEGF receptor-2.</p> <p>Conclusions</p> <p>Our observations suggest soluble forms of PlnDI are biologically active. Moreover, PlnDI heparan sulfate chains alone or together with VEGF<sub>165 </sub>can enhance VEGFR-2 signaling and angiogenic events, <it>in vitro</it>. We propose PlnDI liberated during basement membrane or extracellular matrix turnover may have similar activities, <it>in vivo</it>.</p
- …
