97 research outputs found

    Multi-cell soft errors at the 16-nm FinFET technology node

    Get PDF

    Reverse Myocardial Remodeling Following Valve Replacement in Patients With Aortic Stenosis

    Get PDF
    BACKGROUND: Left ventricular (LV) hypertrophy, a key process in human cardiac disease, results from cellular (hypertrophy) and extracellular matrix expansion (interstitial fibrosis). OBJECTIVES: This study sought to investigate whether human myocardial interstitial fibrosis in aortic stenosis (AS) is plastic and can regress. METHODS: Patients with symptomatic, severe AS (n = 181; aortic valve area index 0.4 ± 0.1 cm2/m2) were assessed pre-aortic valve replacement (AVR) by echocardiography (AS severity, diastology), cardiovascular magnetic resonance (CMR) (for volumes, function, and focal or diffuse fibrosis), biomarkers (N-terminal pro-B-type natriuretic peptide and high-sensitivity troponin T), and the 6-min walk test. CMR was used to measure the extracellular volume fraction (ECV), thereby deriving matrix volume (LV mass × ECV) and cell volume (LV mass × [1 - ECV]). Biopsy excluded occult bystander disease. Assessment was repeated at 1 year post-AVR. RESULTS: At 1 year post-AVR in 116 pacemaker-free survivors (age 70 ± 10 years; 54% male), mean valve gradient had improved (48 ± 16 mm Hg to 12 ± 6 mm Hg; p < 0.001), and indexed LV mass had regressed by 19% (88 ± 26 g/m2to 71 ± 19 g/m2; p < 0.001). Focal fibrosis by CMR late gadolinium enhancement did not change, but ECV increased (28.2 ± 2.9% to 29.9 ± 4.0%; p < 0.001): this was the result of a 16% reduction in matrix volume (25 ± 9 ml/m2to 21 ± 7 ml/m2; p < 0.001) but a proportionally greater 22% reduction in cell volume (64 ± 18 ml/m2to 50 ± 13 ml/m2; p < 0.001). These changes were accompanied by improvement in diastolic function, N-terminal pro-B-type natriuretic peptide, 6-min walk test results, and New York Heart Association functional class. CONCLUSIONS: Post-AVR, focal fibrosis does not resolve, but diffuse fibrosis and myocardial cellular hypertrophy regress. Regression is accompanied by structural and functional improvements suggesting that human diffuse fibrosis is plastic, measurable by CMR and a potential therapeutic target. (Regression of Myocardial Fibrosis After Aortic Valve Replacement; NCT02174471)

    Precision measurement of cardiac structure and function in cardiovascular magnetic resonance using machine learning

    Get PDF
    BACKGROUND: Measurement of cardiac structure and function from images (e.g. volumes, mass and derived parameters such as left ventricular (LV) ejection fraction [LVEF]) guides care for millions. This is best assessed using cardiovascular magnetic resonance (CMR), but image analysis is currently performed by individual clinicians, which introduces error. We sought to develop a machine learning algorithm for volumetric analysis of CMR images with demonstrably better precision than human analysis. METHODS: A fully automated machine learning algorithm was trained on 1923 scans (10 scanner models, 13 institutions, 9 clinical conditions, 60,000 contours) and used to segment the LV blood volume and myocardium. Performance was quantified by measuring precision on an independent multi-site validation dataset with multiple pathologies with n = 109 patients, scanned twice. This dataset was augmented with a further 1277 patients scanned as part of routine clinical care to allow qualitative assessment of generalization ability by identifying mis-segmentations. Machine learning algorithm ('machine') performance was compared to three clinicians ('human') and a commercial tool (cvi42, Circle Cardiovascular Imaging). FINDINGS: Machine analysis was quicker (20 s per patient) than human (13 min). Overall machine mis-segmentation rate was 1 in 479 images for the combined dataset, occurring mostly in rare pathologies not encountered in training. Without correcting these mis-segmentations, machine analysis had superior precision to three clinicians (e.g. scan-rescan coefficients of variation of human vs machine: LVEF 6.0% vs 4.2%, LV mass 4.8% vs. 3.6%; both P < 0.05), translating to a 46% reduction in required trial sample size using an LVEF endpoint. CONCLUSION: We present a fully automated algorithm for measuring LV structure and global systolic function that betters human performance for speed and precision

    Maximal Wall Thickness Measurement in Hypertrophic Cardiomyopathy: Biomarker Variability and its Impact on Clinical Care

    Get PDF
    OBJECTIVES: The aim of this study was to define the variability of maximal wall thickness (MWT) measurements across modalities and predict its impact on care in patients with hypertrophic cardiomyopathy (HCM). BACKGROUND: Left ventricular MWT measured by echocardiography or cardiovascular magnetic resonance (CMR) contributes to the diagnosis of HCM, stratifies risk, and guides key decisions, including whether to place an implantable cardioverter-defibrillator (ICD). METHODS: A 20-center global network provided paired echocardiographic and CMR data sets from patients with HCM, from which 17 paired data sets of the highest quality were selected. These were presented as 7 randomly ordered pairs (at 6 cardiac conferences) to experienced readers who report HCM imaging in their daily practice, and their MWT caliper measurements were captured. The impact of measurement variability on ICD insertion decisions was estimated in 769 separately recruited multicenter patients with HCM using the European Society of Cardiology algorithm for 5-year risk for sudden cardiac death. RESULTS: MWT analysis was completed by 70 readers (from 6 continents; 91% with >5 years' experience). Seventy-nine percent and 68% scored echocardiographic and CMR image quality as excellent. For both modalities (echocardiographic and then CMR results), intramodality inter-reader MWT percentage variability was large (range -59% to 117% [SD ±20%] and -61% to 52% [SD ±11%], respectively). Agreement between modalities was low (SE of measurement 4.8 mm; 95% CI 4.3 mm-5.2 mm; r = 0.56 [modest correlation]). In the multicenter HCM cohort, this estimated echocardiographic MWT percentage variability (±20%) applied to the European Society of Cardiology algorithm reclassified risk in 19.5% of patients, which would have led to inappropriate ICD decision making in 1 in 7 patients with HCM (8.7% would have had ICD placement recommended despite potential low risk, and 6.8% would not have had ICD placement recommended despite intermediate or high risk). CONCLUSIONS: Using the best available images and experienced readers, MWT as a biomarker in HCM has a high degree of inter-reader variability and should be applied with caution as part of decision making for ICD insertion. Better standardization efforts in HCM recommendations by current governing societies are needed to improve clinical decision making in patients with HCM

    INCA (Peru) study: Impact of non-invasive cardiac magnetic resonance assessment in the developing world

    Get PDF
    Background—Advanced cardiac imaging permits optimal targeting of cardiac treatment but needs to be faster, cheaper, and easier for global delivery. We aimed to pilot rapid cardiac magnetic resonance (CMR) with contrast in a developing nation, embedding it within clinical care along with training and mentoring. Methods and Results—A cross-sectional study of CMR delivery and clinical impact assessment performed 2016-2017 in an upper middle-income country. An International partnership (clinicians in Peru and collaborators from the United Kingdom, United States, Brazil, and Colombia) developed and tested a 15-minute CMR protocol in the United Kingdom, for cardiac volumes, function and scar, and delivered it with reporting combined with training, education and mentoring in 2 centers in the capital city, Lima, Peru, 100 patients referred by local doctors from 6 centers. Management changes related to the CMR were reviewed at 12 months. One-hundred scans were conducted in 98 patients with no complications. Final diagnoses were cardiomyopathy (hypertrophic, 26%; dilated, 22%; ischemic, 15%) and 12 other pathologies including tumors, congenital heart disease, iron overload, amyloidosis, genetic syndromes, vasculitis, thrombi, and valve disease. Scan cost was 150USD,andtheaveragescandurationwas18±7minutes.Findingsimpactedmanagementin56150 USD, and the average scan duration was 18±7 minutes. Findings impacted management in 56% of patients, including previously unsuspected diagnoses in 19% and therapeutic management changes in 37%. Conclusions—Advanced cardiac diagnostics, here CMR with contrast, is possible using existing infrastructure in the developing world in 18 minutes for 150, resulting in important changes in patient care

    Proceedings of the International Cancer Imaging Society (ICIS) 16th Annual Teaching Course

    Full text link
    Table of contents O1 Tumour heterogeneity: what does it mean? Dow-Mu Koh O2 Skeletal sequelae in adult survivors of childhood cancer Sue Creviston Kaste O3 Locoregional effects of breast cancer treatment Sarah J Vinnicombe O4 Imaging of cancer therapy-induced CNS toxicity Giovanni Morana, Andrea Rossi O5 Screening for lung cancer Christian J. Herold O6Risk stratification of lung nodules Theresa C. McLoud O7 PET imaging of pulmonary nodules Kirk A Frey O8 Transarterial tumour therapy Bernhard Gebauer O9 Interventional radiology in paediatric oncology Derek Roebuck O10 Image guided prostate interventions Jurgen J. FĂŒtterer O11 Imaging cancer predisposition syndromes Alexander J. Towbin O12Chest and chest wall masses Thierry AG Huisman O13 Abdominal masses: good or bad? Anne MJB Smets O14 Hepatobiliary MR contrast: enhanced liver MRI for HCC diagnosis and management Giovanni Morana O15 Role of US elastography and multimodality fusion for managing patients with chronic liver disease and HCC Jeong Min Lee O16 Opportunities and challenges in imaging metastatic disease Hersh Chandarana O17 Diagnosis, treatment monitoring, and follow-up of lymphoma Marius E. Mayerhoefer, Markus Raderer, Alexander Haug O18 Managing high-risk and advanced prostate cancer Matthias Eiber O19 Immunotherapy: imaging challenges Bernhard Gebauer O20 RECIST and RECIST 1.1 Andrea Rockall O21 Challenges of RECIST in oncology imaging basics for the trainee and novice Aslam Sohaib O22 Lymphoma: PET for interim and end of treatment response assessment: a users’ guide to the Deauville Score Victoria S Warbey O23 Available resources Hebert Alberto Vargas O24 ICIS e-portal and the online learning community Dow-Mu Koh O25 Benign lesions that mimic pancreatic cancer Jay P Heiken O26 Staging and reporting pancreatic malignancies Isaac R Francis, Mahmoud, M Al-Hawary, Ravi K Kaza O27 Intraductal papillary mucinous neoplasm Giovanni Morana O28 Cystic pancreatic tumours Mirko D’Onofrio O29 Diffusion-weighted imaging of head and neck tumours Harriet C. Thoeny O30 Radiation injury in the head and neck Ann D King O31 PET/MR of paediatric brain tumours Giovanni Morana, Arnoldo Piccardo, Maria Luisa GarrĂš, Andrea Rossi O32 Structured reporting and beyond Hebert Alberto Vargas O33 Massachusetts General Hospital experience with structured reporting Theresa C. McLoud O34 The oncologist’s perspective: what the oncologist needs to know Nick Reed O35 Towards the cure of all children with cancer: global initiatives in pediatric oncology Carlos Rodriguez-Galindo O36 Multiparametric imaging of renal cancers Hersh Chandarana O37 Linking imaging features of renal disease and their impact on management strategies Hebert Alberto Vargas O38 Adrenals, retroperitoneum and peritoneum Isaac R Francis, Ashish P Wasnik O39 Lung and pleura Stefan Diederich O40 Advances in MRI Jurgen J. FĂŒtterer O41 Advances in molecular imaging Wim J.G. Oyen O42 Incorporating advanced imaging, impact on treatment selection and patient outcome Cheng Lee Chaw, Nicholas van As S1 Combining ADC-histogram features improves performance of MR diffusion-weighted imaging for Lymph node characterisation in cervical cancer Igor Vieira, Frederik De Keyzer, Elleke Dresen, Sileny Han, Ignace Vergote, Philippe Moerman, Frederic Amant, Michel Koole, Vincent Vandecaveye S2 Whole-body diffusion-weighted MRI for surgical planning in patients with colorectal cancer and peritoneal metastases R Dresen, S De Vuysere, F De Keyzer, E Van Cutsem, A D’Hoore, A Wolthuis, V Vandecaveye S3 Role of apparent diffusion coefficient (ADC) diffusion-weighted MRI for predicting extra capsular extension of prostate cancer. P. Pricolo ([email protected]), S. Alessi, P. Summers, E. Tagliabue, G. Petralia S4 Generating evidence for clinical benefit of PET/CT – are management studies sufficient as surrogate for patient outcome? C. Pfannenberg, B. GĂŒckel, SC SchĂŒle, AC MĂŒller, S. Kaufmann, N. Schwenzer, M. Reimold,C. la Fougere, K. Nikolaou, P. Martus S5 Heterogeneity of treatment response in skeletal metastases from breast cancer with 18F-fluoride and 18F-FDG PET GJ Cook, GK Azad, BP Taylor, M Siddique, J John, J Mansi, M Harries, V Goh S6 Accuracy of suspicious breast imaging—can we tell the patient? S Seth, R Burgul, A Seth S7 Measurement method of tumour volume changes during neoadjuvant chemotherapy affects ability to predict pathological response S Waugh, N Muhammad Gowdh, C Purdie, A Evans, E Crowe, A Thompson, S Vinnicombe S8 Diagnostic yield of CT IVU in haematuria screening F. Arfeen, T. Campion, E. Goldstraw S9 Percutaneous radiofrequency ablation of unresectable locally advanced pancreatic cancer: preliminary results D’Onofrio M, Ciaravino V, Crosara S, De Robertis R, Pozzi Mucelli R S10 Iodine maps from dual energy CT improve detection of metastases in staging examinations of melanoma patients M. Uhrig, D. Simons, H. Schlemmer S11Can contrast enhanced CT predict pelvic nodal status in malignant melanoma of the lower limb? Kate Downey S12 Current practice in the investigation for suspected Paraneoplastic Neurological Syndromes (PNS) and positive malignancy yield. S Murdoch, AS Al-adhami, S Viswanathan P1 Technical success and efficacy of Pulmonary Radiofrequency ablation: an analysis of 207 ablations S Smith, P Jennings, D Bowers, R Soomal P2 Lesion control and patient outcome: prospective analysis of radiofrequency abaltion in pulmonary colorectal cancer metastatic disease S Smith, P Jennings, D Bowers, R Soomal P3 Hepatocellular carcinoma in a post-TB patient: case of tropical infections and oncologic imaging challenges TM Mutala, AO Odhiambo, N Harish P4 Role of apparent diffusion coefficient (ADC) diffusion-weighted MRI for predicting extracapsular extension of prostate cancer P. Pricolo, S. Alessi, P. Summers, E. Tagliabue, G. Petralia P5 What a difference a decade makes; comparison of lung biopsies in Glasgow 2005 and 2015 M. Hall, M. Sproule, S. Sheridan P6 Solid pseudopapillary tumour of pancreas: imaging features of a rare neoplasm KY Thein, CH Tan, YL Thian, CM Ho P7 MDCT - pathological correlation in colon adenocarcinoma staging: preliminary experience S De Luca, C Carrera, V Blanchet, L AlarcĂłn, E Eyheremnedy P8 Image guided biopsy of thoracic masses and reduction of pneumothorax risk: 25 years experience B K Choudhury, K Bujarbarua, G Barman P9 Tumour heterogeneity analysis of 18F-FDG-PET for characterisation of malignant peripheral nerve sheath tumours in neurofibromatosis-1 GJ Cook, E Lovat, M Siddique, V Goh, R Ferner, VS Warbey P10 Impact of introduction of vacuum assisted excision (VAE) on screen detected high risk breast lesions L Potti, B Kaye, A Beattie, K Dutton P11 Can we reduce prevalent recall rate in breast screening? AA Seth, F Constantinidis, H Dobson P12 How to reduce prevalent recall rate? Identifying mammographic lesions with low Positive Predictive Value (PPV) AA Seth ([email protected]), F Constantinidis, H Dobson P13 Behaviour of untreated pulmonary thrombus in oncology patients diagnosed with incidental pulmonary embolism on CT R. Bradley, G. Bozas, G. Avery, A. Stephens, A. Maraveyas P14 A one-stop lymphoma biopsy service – is it possible? S Bhuva, CA Johnson, M Subesinghe, N Taylor P15 Changes in the new TNM classification for lung cancer (8th edition, effective January 2017) LE Quint, RM Reddy, GP Kalemkerian P16 Cancer immunotherapy: a review of adequate imaging assessment G GonzĂĄlez Zapico, E Gainza Jauregui, R Álvarez Francisco, S Ibåñez Alonso, I Tavera Bahillo, L MĂșgica Álvarez P17 Succinate dehydrogenase mutations and their associated tumours O Francies, R Wheeler, L Childs, A Adams, A Sahdev P18 Initial experience in the usefulness of dual energy technique in the abdomen SE De Luca, ME Casalini Vañek, MD Pascuzzi, T Gillanders, PM Ramos, EP Eyheremendy P19 Recognising the serious complication of Richter’s transformation in CLL patients C Stove, M Digby P20 Body diffusion-weighted MRI in oncologic practice: truths, tricks and tips M. Nazar, M. Wirtz, MD. Pascuzzi, F. Troncoso, F. Saguier, EP. Eyheremendy P21 Methotrexate-induced leukoencephalopathy in paediatric ALL Patients D.J. Quint, L. Dang, M. Carlson, S. Leber, F. Silverstein P22 Pitfalls in oncology CT reporting. A pictorial review R Rueben, S Viswanathan P23 Imaging of perineural extension in head and neck tumours B Nazir, TH Teo, JB Khoo P24 MRI findings of molecular subtypes of breast cancer: a pictorial primer K Sharma, N Gupta, B Mathew, T Jeyakumar, K Harkins P25 When cancer can’t wait! A pictorial review of oncological emergencies K Sharma, B Mathew, N Gupta, T Jeyakumar, S Joshua P26 MRI of pancreatic neuroendocrine tumours: an approach to interpretation D Christodoulou, S Gourtsoyianni, A Jacques, N Griffin, V Goh P27 Gynaecological cancers in pregnancy: a review of imaging CA Johnson, J Lee P28 Suspected paraneoplastic neurological syndromes - review of published recommendations to date, with proposed guideline/flowchart JA Goodfellow, AS Al-adhami, S Viswanathan P29 Multi-parametric MRI of the pelvis for suspected local recurrence of prostate cancer after radical prostatectomy R Bradley P30 Utilisation of PI-RADS version 2 in multi-parametric MRI of the prostate; 12-months experience R Bradley P31 Radiological assessment of the post-chemotherapy liver A Yong, S Jenkins, G Joseph P32 Skeletal staging with MRI in breast cancer – what the radiologist needs to know S Bhuva, K Partington P33 Perineural spread of lympoma: an educational review of an unusual distribution of disease CA Johnson, S Bhuva, M Subesinghe, N Taylor P34 Visually isoattenuating pancreatic adenocarcinoma. Diagnostic imaging tools. C Carrera, A Zanfardini, S De Luca, L AlarcĂłn, V Blanchet, EP Eyheremendy P35 Imaging of larynx cancer: when is CT, MRI or FDG PET/CT the best test? K Cavanagh, E Lauhttp://deepblue.lib.umich.edu/bitstream/2027.42/134651/1/40644_2016_Article_79.pd

    MyoMiner: explore gene co-expression in normal and pathological muscle

    Get PDF
    International audienceBackground: High-throughput transcriptomics measures mRNA levels for thousands of genes in a biological sample. Most gene expression studies aim to identify genes that are differentially expressed between different biological conditions, such as between healthy and diseased states. However, these data can also be used to identify genes that are co-expressed within a biological condition. Gene co-expression is used in a guilt-by-association approach to prioritize candidate genes that could be involved in disease, and to gain insights into the functions of genes, protein relations, and signaling pathways. Most existing gene co-expression databases are generic, amalgamating data for a given organism regardless of tissue-type.Methods: To study muscle-specific gene co-expression in both normal and pathological states, publicly available gene expression data were acquired for 2376 mouse and 2228 human striated muscle samples, and separated into 142 categories based on species (human or mouse), tissue origin, age, gender, anatomic part, and experimental condition. Co-expression values were calculated for each category to create the MyoMiner database.Results: Within each category, users can select a gene of interest, and the MyoMiner web interface will return all correlated genes. For each co-expressed gene pair, adjusted p-value and confidence intervals are provided as measures of expression correlation strength. A standardized expression-level scatterplot is available for every gene pair r-value. MyoMiner has two extra functions: (a) a network interface for creating a 2-shell correlation network, based either on the most highly correlated genes or from a list of genes provided by the user with the option to include linked genes from the database and (b) a comparison tool from which the users can test whether any two correlation coefficients from different conditions are significantly different.Conclusions: These co-expression analyses will help investigators to delineate the tissue-, cell-, and pathology-specific elements of muscle protein interactions, cell signaling and gene regulation. Changes in co-expression between pathologic and healthy tissue may suggest new disease mechanisms and help define novel therapeutic targets. Thus, MyoMiner is a powerful muscle-specific database for the discovery of genes that are associated with related functions based on their co-expression. MyoMiner is freely available at https://www.sys-myo.com/myominer

    Profiling of lung SARS-CoV-2 and influenza virus infection dissects virus-specific host responses and gene signatures

    Get PDF
    BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which emerged in late 2019 has spread globally, causing a pandemic of respiratory illness designated coronavirus disease 2019 (COVID-19). A better definition of the pulmonary host response to SARS-CoV-2 infection is required to understand viral pathogenesis and to validate putative COVID-19 biomarkers that have been proposed in clinical studies. METHODS: Here, we use targeted transcriptomics of formalin-fixed paraffin-embedded tissue using the NanoString GeoMX platform to generate an in-depth picture of the pulmonary transcriptional landscape of COVID-19, pandemic H1N1 influenza and uninfected control patients. RESULTS: Host transcriptomics showed a significant upregulation of genes associated with inflammation, type I interferon production, coagulation and angiogenesis in the lungs of COVID-19 patients compared to non-infected controls. SARS-CoV-2 was non-uniformly distributed in lungs (emphasising the advantages of spatial transcriptomics) with the areas of high viral load associated with an increased type I interferon response. Once the dominant cell type present in the sample, within patient correlations and patient-patient variation, had been controlled for, only a very limited number of genes were differentially expressed between the lungs of fatal influenza and COVID-19 patients. Strikingly, the interferon-associated gene IFI27, previously identified as a useful blood biomarker to differentiate bacterial and viral lung infections, was significantly upregulated in the lungs of COVID-19 patients compared to patients with influenza. CONCLUSION: Collectively, these data demonstrate that spatial transcriptomics is a powerful tool to identify novel gene signatures within tissues, offering new insights into the pathogenesis of SARS-COV-2 to aid in patient triage and treatment.Arutha Kulasinghe, Chin Wee Tan, Anna Flavia Ribeiro dos Santos Miggiolaro, James Monkman, Habib SadeghiRad, Dharmesh D. Bhuva, Jarbas da Silva Motta Junior, Caroline Busatta Vaz de Paula, Seigo Nagashima, Cristina Pellegrino Baena, Paulo Souza-Fonseca-Guimaraes, Lucia de Noronha, Timothy McCulloch, Gustavo Rodrigues Rossi, Caroline Cooper, Benjamin Tang, Kirsty R. Short, Melissa J. Davis, Fernando Souza-Fonseca-Guimaraes, Gabrielle T. Belz, and Ken O, Byrn
    • 

    corecore