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Abstract—Soft error performance of 16-nm 
designs fabricated using a commercial bulk C
evaluated using heavy-ions. Results included
variations show that multi-cell upsets dominate
Dual-port SRAM has higher cross-section 
SRAM but did not have any multi-cell upset a
direction. TCAD simulations showing the 
perturbation in the electric parameters as a fu
LET support the experimental data. 
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I.  INTRODUCTION 
With the conversion from planar to Fi

structure for advanced technology nodes c
recent past, the focus has shifted to reliab
technologies.  For planar technologies, soft-e
failures were expected to have the highest FIT
to any other type of failures [1]. The 3-D stru
transistors, as opposed to 2-D structure of plan
expected to alter the charge generation 
processes associated with soft errors [2]. Av
models for FinFET SRAM and flip-flop 
decrease in overall soft-error rates (SER) as s
and 1b [2,3].  Fig. 1(a) shows the experim
multiple technologies spanning almost a de
planar technologies show a declining trend a
reduced on an IC.  At the introduction of Fin
node, a sharp drop in SER is observed.  The
significant, but less than a decade.  Simil
results, shown in Fig. 1(b), show the differe
planar and FinFET technology for collected
single-event ion hit.  The 3D physical structur
narrow connection to the substrate for 
significantly less collected charge than their 
under identical conditions. All these resul
superior performance of FinFET node 
comparable bulk node. 

 
However, FIT rates (or collected charge 

alone do not give a complete picture o
vulnerability. With the close proximity of t
SRAM design, multi-cell upsets are fast beco
In this paper, all multi-cell upsets, whether 
columns or across rows, are termed as M
(MCU). As the extent and range of MCU’s
determine the interleaving and MCU’s across
error correction and detection (ECC) para
designers, it is fast becoming a very impor
SRAM designs. To reduce the risk of having m
an ECC protected word due to MCU, lar
distance is required which could incur ar

rrors at the 16-nm FinFET Technology 
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for different supply voltages.  
SRAM designs were investigated. 
dominate for high-energy particle
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high LET values at reduced supply v

II. TEST CIRCUITS &
Test ICs were fabricated at a co

16-nm bulk FinFET process. SR
single-port and dual-port designs. T
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LET
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14N
20Ne 
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321 
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1.16
2.4

4.35
40Ar 642 8.34
63Cu 1007 16.5
78Kr

124Xe 
1226 
1955 

24.9
49.2
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cm2/mg. Table I lists the ion beams, the corres
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data was written back into the memory cell.
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more than critical charge for a single ion hit [8-9] (this is 
usually referred to as charge-sharing). The extent of MCU (the 
number of upset bits) represents the distance over which 
charge may diffuse and get collected by multiple SRAM cells. 
Fig. 3(a) shows the MCU contribution for Ar with an LET 
value of 7.27 MeV-cm2/mg.  For this particle, the maximum 
number of multiple-upset bits is 2.  With the SRAM cell size 
at the 16-nm node expected to be 0.05-0.07 m2, 2-bit MCU 
at this LET yields a good estimate of the distance over which 
enough charge may get collected to cause an upset. As particle 
LET increases to 16.5 MeV-cm2/mg for Cu, as shown in Fig. 
3(b), the highest number MCU increases to 4. Further 
increases in LET for Xe (LET = 49 MeV-cm2/mg) increase the 
number of MCU bits to 8. These results show that significant 
amount of charge being collected by multiple transistors from 
a single incident particle for FinFET technologies.  These 
results clearly show that charge-sharing effects are not 
diminished at the 16-nm FinFET technology node.  

The supply voltage dependence in Fig. 3 shows increased 
number of occurrences for large cluster sizes as supply voltage 
is decreased. In addition, the MCU cluster size also increases 
with reduced supply voltage. The increase in MCU cluster size 
is a direct result of the decreased critical charge as supply 
voltage is reduced. The reduced power supply will result in 
reduced Qcrit for SRAM cells, resulting in more cells 
vulnerable to an ion hit. All SRAM cells surrounding the hit 
location will collect charge as a result of charge deposition. As 
the amount of charge collected by a cell is a weak function of 
supply voltage, the collected charge value does not change 
significantly as supply voltage is reduced. The reduction in 
Qcrit due to supply voltage reduction is the primary cause for 
the increase in the number of upset cells. For a given 
technology node, the parameters controlling charge diffusion 
in the substrate after an ion strike are independent of supply 
voltage. As the charge collected by a node due to diffusion 
process is a weak function of the nodal voltage [9], charge 
collected by SRAM cells surrounding the hit location is 
mostly constant when supply voltage is varied.  One of the 
major effects of reduced supply voltage is reduced critical 
charge. This reduction in critical charge increases the number 
of SRAM cells that have collected more than critical charge 
after an ion hit, resulting in increased cluster size as seen in 
Fig. 3.  

Results for cross-section per bit as a function of particle 
LET for different supply voltages for dual-port SRAM design 
are shown in Fig. 4. Cross-section values for particles with 
high LET also show a non-saturating behavior.  This is again 
caused by the inclusion of MCU in the overall error numbers.  
As the particle LET increases, the number of MCU increases, 
resulting in increasing cross-section per bit. Similar to single-
port SRAM designs, the threshold LET values for the SRAM 
cell is very low.  In fact, the threshold LET values for both 
types of memory cells are indistinguishable from the test 
results. Cross-section curves for single-port and dual-port 

designs for 800 mV supply voltage clearly show similar 
threshold LET, as shown in Fig. 5. 

Dual-port SRAM cells are usually designed with two sets of 
access transistors allowing access to the SRAM cell data on 
two different bit lines.  The increased number of access 
transistors increases the nodal capacitances associated with the 
storage nodes.  With increased capacitance, the critical charge 
required to cause an upset also increases.  For a first order of 
approximation, the critical charge is proportional to Vdd * 
Cnode, where Vdd is the supply voltage and Cnode is the nodal 
capacitance for the storage node.  Accordingly, the dual-port 
SRAM cells are expected to have higher critical charge than 
single-port SRAM cells, resulting in higher threshold LET and 
lower saturated cross-section values than single-port SRAM 
cells.  The lack of distinction between these two designs for 
threshold LET values stems from the very low critical charge 
for both the cells.  For the particle LET values used in this 
study, the amount of charge deposited is much higher than the 

critical charge for each cell.  As a result, a small increase in 
critical charge due to increased nodal capacitances is 
overcome by the large amount of charge deposited by the 
particles used in the tests.  

Saturated cross-section values for storage cells are 
indicative of the sensitive area for all vulnerable transistors. 
For older technologies, this used to be the drain regions of all 
vulnerable transistors as ion hits outside the drain regions did 
not result in significant charge collection at circuit nodes. With 
the critical charge values at these technologies significantly 
higher than the amount of charge collected from ion hits 
outside the drain region, sensitive area (or saturated cross-
section values) was obtained by adding drain area for all 
vulnerable transistors. For advanced technologies, very low 
critical charge means ion hits outside the drain regions are 
capable of causing an upset. As a result, sensitive area for a 
transistor extends beyond the drain area of a transistor. 
Usually, as critical charge increases, this sensitive area 
decreases due to the fact that collected charge is inversely 
related to the distance between the drain boundary and the hit 
location.  

 
Fig. 4. Cross-section results for dual-port SRAM designs a a function of 
supply voltage. 
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single-port SRAM designs, the cluster size of 14 and 30 was 
observed only once, while most of the cluster sizes for rows 
were less than 6  

IV. TCAD ANALYSIS 

Synopsys 3D TCAD simulations were carried out to 
estimate the extent of distance over which significant single-
event effects (perturbation in electric potential, collected 
charge as a function of distance, etc.) occur in a structure 
representative of a 16 nm bulk FinFET technology. 
Simulations were run for single event strikes into the N-
WELL, near the OFF-PMOS FinFET devices. This strike 
location was chosen because of the impact that single-event 
strikes have on de-biasing an N-WELL in a bulk CMOS 
process. Simulations were carried out for the nominal supply 
voltage of 0.9 V.  In Fig. 7, the 2-D cross-section cut along the 
length of the N-WELL shows the electron density at 300 ps 
after a single event strike with LET=60 MeV-cm2/mg. At 300 
ps after the ion strike, the electron density is 4x1019 cm-3 in the 
vicinity of the hit location and stays above 2x1018 cm-3 

approximately 500 nm from the hit location. To put that 
dimension into perspective, a FinFET device is on the order of 
100 nm at its largest point. For an SRAM cell size of ~0.039 

m2, perturbation over such a wide distance will result in 
multiple bits affected in the SRAM array.  

Simulation results, shown in Fig. 8, show the distance over 
which potential perturbations are observed with increasing 
particle LET. The figure shows the electrostatic potential 
through a doped n-type region (the higher than supply voltage 
potential shown on the chart is the result of the TCAD 

simulator characteristics.  It is not the same as the externally 
applied supply voltage). Larger physical range of perturbations 
will result in increased number of cells affected by a single-ion 
hit. In Fig. 8, it is shown that the N-WELL electrostatic 
potential is greatly perturbed for several microns on either side 
of an ion strike when compared to a pre-strike condition. 

V. CONCLUSIONS 
Heavy-ion exposures for 16-nm FinFET SRAM show that 

SER is dominated by MCU’s for high LET particles.  Dual-port 
SRAM has higher cross-section than single-port SRAM but it 
should have more relaxed bit-interleaving requirement than the 
single-port SRAM.  For a particle LET of 50 MeV-cm2/mg, the 
MCU cross-section is an order of magnitude higher than SBU 
cross-section. TCAD results show the extent of charge-sharing 
at this technology node.  Results presented in this paper will 
help designers estimate the ECC and interleaving design 
parameters for FinFET SRAM designs at the 16-nm FinFET 
node.  
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Fig. 8.  Extent of electrostatic potential disturbance in 
an NWELL after an ion strike on an SRAM cell in the 
16-nm FinFET node.  

Fig. 7 Electron density at 300 ps after an ion hit with LET 
value of 60 MeV-cm2/mg.  The small notch in the middle is 
an SRAM cell and the ion hit was located 500 nm on the left 
of the SRAM cell. 
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