6,868 research outputs found
Vertical stratification of iron in atmospheres of blue horizontal-branch stars
The aim of this study is to search for observational evidence of vertical
iron stratification in the atmosphere of fourteen blue horizontal-branch (BHB)
stars. We have found from our numerical simulations that five BHB stars: B22,
B186 in the globular cluster NGC 288, WF2-820, WF2-2692 in M13 and B203 in M15
show clear signatures of the vertical stratification of iron whose abundance
increases toward the lower atmosphere. Two other BHB stars (B334 in M15 and
B176 in M92) also show possible iron stratification in their atmosphere. A
dependence of the slope of iron stratification on the effective temperature was
also discovered. It is found that the vertical stratification of iron is
strongest in BHB stars with Teff around 11,500K. The slope of iron abundance
decreases as Teff increases and becomes negligible for the BHB stars with Teff=
14,000K. These results support the hypothesis regarding the efficiency of
atomic diffusion in the stellar atmospheres of BHB stars with Teff > 11,500K.Comment: 6 pages, 2 figures, 3 table
Search for vertical stratification of metals in atmospheres of blue horizontal-branch stars
The observed abundance peculiarities of many chemical species relative to the
expected cluster metallicity in blue horizontal-branch (BHB) stars presumably
appear as a result of atomic diffusion in the photosphere. The slow rotation
(typically 10 km s) of BHB stars with effective temperatures
11,500 K supports this idea since the diffusion mechanism is
only effective in a stable stellar atmosphere. In this work we search for
observational evidence of vertical chemical stratification in the atmospheres
of six hot BHB stars: B84, B267 and B279 in M15 and WF2-2541, WF4-3085 and
WF4-3485 in M13. We undertake an abundance stratification analysis of the
stellar atmospheres of the aforementioned stars, based on acquired Keck HIRES
spectra. We have found from our numerical simulations that three stars (B267,
B279 and WF2-2541) show clear signatures of the vertical stratification of iron
whose abundance increases toward the lower atmosphere, while the other two
stars (B84 and WF4-3485) do not. For WF4-3085 the iron stratification results
are inconclusive. B267 also shows a signature of titanium stratification. Our
estimates for radial velocity, and overall iron, titanium and
phosphorus abundances agree with previously published data for these stars
after taking the measurement errors into account. The results support the
hypothesis regarding the efficiency of atomic diffusion in the stellar
atmospheres of BHB stars with 11,500 K.Comment: 8 pages, 12 figures, accepted for publication in Astronomy and
Astrophysic
THuCIDIDES: a high-efficiency multimode spectrograph design for the Hale Telescope
This paper describes the operating parameters and initial design of a new spectrograph proposed for the 200-inch Hale Telescope at Palomar Observatory. The instrument, whose working name is THuCIDIDES (Two Hundred-inch Cassegrain Image- Deblurred Interchangeable-Disperser/Echelle Spectrograph), will feature high system efficiency and multiple modes of operation, including low- and intermediate-resolution long slit and multi-slit capability over 12.5 X 3 arcmin fields, and a cross-dispersed echelle mode covering 3800 - 8500 angstrom at R equals 20,000 (with a 1.2 arcsecond slit) up to R equals 60,000 (with an image slicer). A 4096 X 4096 pixel CCD will serve as the detector. The quasi-Littrow echelle configuration and use of a prism cross-disperser will result in high system efficiency, estimated at approximately equals 14%. The compact design will permit mounting in the Cassegrain ring plane, to reduce susceptibility to flexure. An optional fast-guiding tilt mirror provides modest improvement to seeing FWHM and slit throughput
Recommended from our members
A Comparison of Interpolation Methods for Sparse Data: Application to Wind and Concentration Fields
In order to produce gridded fields of pollutant concentration data and surface wind data for use in an air quality model, a number of techniques for interpolating sparse data values are compared. The techniques are compared using three data sets. One is an idealized concentration distribution to which the exact solution is known, the second is a potential flow field, while the third consists of surface ozone concentrations measured in the Los Angeles Basin on a particular day. The results of the study indicate that fitting a second-degree polynomial to each subregion (triangle) in the plane with each data point weighted according to its distance from the subregion provides a good compromise between accuracy and computational cost
Vertical abundance stratification in the blue horizontal branch star HD135485
It is commonly believed that the observed overabundances of many chemical
species relative to the expected cluster metallicity in blue horizontal branch
(BHB) stars appear as a result of atomic diffusion in the photosphere. The slow
rotation of BHB stars (with T_eff > 11,500K), typically v sin{i} < 10 km/s, is
consistent with this idea. In this work we search for observational evidence of
vertical chemical stratification in the atmosphere of HD135485. If this
evidence exists, it will demonstrate the importance of atomic diffusion
processes in the atmospheres of BHB stars. We undertake an extensive abundance
stratification analysis of the atmosphere of HD135485, based on recently
acquired high resolution and S/N CFHT ESPaDOnS spectra and a McDonald-CE
spectrum. Our numerical simulations show that nitrogen and sulfur reveal
signatures of vertical abundance stratification in the stellar atmosphere. It
appears that the abundances of these elements increase toward the upper
atmosphere. This fact cannot be explained by the influence of microturbulent
velocity, because oxygen, carbon, neon, argon, titanium and chromium do not
show similar behavior and their abundances remain constant throughout the
atmosphere. It seems that the iron abundance may increase marginally toward the
lower atmosphere. This is the first demonstration of vertical abundance
stratification of metals in a BHB star.Comment: 8 pages, 5 figures, accepted to A&
Striking Photospheric Abundance Anomalies in Blue Horizontal-Branch Stars in Globular Cluster M13
High-resolution optical spectra of thirteen blue horizontal-branch (BHB)
stars in the globular cluster M13 show enormous deviations in element
abundances from the expected cluster metallicity. In the hotter stars (T_eff >
12000 K), helium is depleted by factors of 10 to 100 below solar, while iron is
enhanced to three times the solar abundance, two orders of magnitude above the
canonical metallicity [Fe/H] ~= -1.5 dex for this globular cluster. Nitrogen,
phosphorus, and chromium exhibit even more pronounced enhancements, and other
metals are also mildly overabundant, with the exception of magnesium, which
stays very near the expected cluster metallicity. These photospheric anomalies
are most likely due to diffusion --- gravitational settling of helium, and
radiative levitation of the other elements --- in the stable radiative
atmospheres of these hot stars. The effects of these mechanisms may have some
impact on the photometric morphology of the cluster's horizontal branch and on
estimates of its age and distance.Comment: 11 pages, 1 Postscript figure, uses aaspp4.sty, accepted for
publication in ApJ Letter
Pr magnetism and its interplay with the Fe spin density wave in PrFeAsO
We have studied the magnetism of the Pr3+ ions in PrFeAsO_1-xF_x (x = 0;
0.15) and its interaction with the Fe magnetic order (for x = 0). Specific heat
data confirm the presence of a first excited crystal electric field (CEF) level
around 3.5 meV in the undoped compound PrFeAsO. This finding is in agreement
with recent neutron scattering experiments. The doped compound is found to have
a much lower first CEF splitting of about 2.0 meV. The Pr ordering in PrFeAsO
gives rise to large anomalies in the specific heat and the thermal expansion
coefficient. In addition, a field-induced transition is found at low
temperatures that is most pronounced for the magnetostriction coefficient. This
transition, which is absent in the doped compound, is attributed to a reversal
of the Fe spin canting as the antiferromagnetic Pr order is destroyed by the
external magnetic field.Comment: 8 pages, 6 figure
- …