2,787 research outputs found

    Combining total energy and energy industrial center concepts to increase utilization efficiency of geothermal energy

    Get PDF
    Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources

    An adaptive pseudo-spectral method for reaction diffusion problems

    Get PDF
    The spectral interpolation error was considered for both the Chebyshev pseudo-spectral and Galerkin approximations. A family of functionals I sub r (u), with the property that the maximum norm of the error is bounded by I sub r (u)/J sub r, where r is an integer and J is the degree of the polynomial approximation, was developed. These functionals are used in the adaptive procedure whereby the problem is dynamically transformed to minimize I sub r (u). The number of collocation points is then chosen to maintain a prescribed error bound. The method is illustrated by various examples from combustion problems in one and two dimensions

    A perceived gap between invasive species research and stakeholder priorities

    Get PDF
    Information from research has an important role to play in shaping policy and management responses to biological invasions but concern has been raised that research focuses more on furthering knowledge than on delivering practical solutions. We collated 449 priority areas for science and management from 160 stakeholders including practitioners, researchers and policy makers or advisors working with invasive species, and then compared them to the topics of 789 papers published in eight journals over the same time period (2009–2010). Whilst research papers addressed most of the priority areas identified by stakeholders, there was a difference in geographic and biological scales between the two, with individual studies addressing multiple priority areas but focusing on specific species and locations. We hypothesise that this difference in focal scales, combined with a lack of literature relating directly to management, contributes to the perception that invasive species research is not sufficiently geared towards delivering practical solutions. By emphasising the practical applications of applied research, and ensuring that pure research is translated or synthesised so that the implications are better understood, both the management of invasive species and the theoretical science of invasion biology can be enhanced

    A Spin-Orbit Alignment for the Hot Jupiter HATS-3b

    Get PDF
    We have measured the alignment between the orbit of HATS-3b (a recently discovered, slightly inflated Hot Jupiter) and the spin-axis of its host star. Data were obtained using the CYCLOPS2 optical-fiber bundle and its simultaneous calibration system feeding the UCLES spectrograph on the Anglo-Australian Telescope. The sky-projected spin-orbit angle of λ=3±25\lambda = 3\pm25^{\circ} was determined from spectroscopic measurements of Rossiter-McLaughlin effect. This is the first exoplanet discovered through the HATSouth transit survey to have its spin-orbit angle measured. Our results indicate that the orbital plane of HATS-3b is consistent with being aligned to the spin axis of its host star. The low obliquity of the HATS-3 system, which has a relatively hot mid F-type host star, agrees with the general trend observed for Hot Jupiter host stars with effective temperatures >6250>6250K to have randomly distributed spin-orbit angles.Comment: 13 pages. Accepted for publication in the Astrophysical Journa

    Probing Individual Star Forming Regions Within Strongly Lensed Galaxies at z > 1

    Full text link
    Star formation occurs on physical scales corresponding to individual star forming regions, typically of order ~100 parsecs in size, but current observational facilities cannot resolve these scales within field galaxies beyond the local universe. However, the magnification from strong gravitational lensing allows us to measure the properties of these discrete star forming regions within galaxies in the distant universe. New results from multi-wavelength spectroscopic studies of a sample of extremely bright, highly magnified lensed galaxies are revealing the complexity of star formation on sub-galaxy scales during the era of peak star formation in the universe. We find a wide range of properties in the rest-frame UV spectra of individual galaxies, as well as in spectra that originate from different star forming regions within the same galaxy. Large variations in the strengths and velocity structure of Lyman-alpha and strong P Cygni lines such as C IV, and MgII provide new insights into the astrophysical relationships between extremely massive stars, the elemental abundances and physical properties of the nebular gas those stars ionize, and the galactic-scale outflows they power.Comment: 4 pages, 3 figures. To be published in the Proceedings of IAU Symposium 309. For more details and closely related work see also arXiv:1310.6695 and arXiv:1406.335

    Time Delay Measurements for the Cluster-lensed Sextuple Quasar SDSS J2222+2745

    Full text link
    We report first results from an ongoing monitoring campaign to measure time delays between the six images of the quasar SDSS\,J2222++2745, gravitationally lensed by a galaxy cluster. The time delay between A and B, the two most highly magnified images, is measured to be τAB=47.7±6.0\tau_{\rm AB} = 47.7 \pm 6.0 days (95\% confidence interval), consistent with previous model predictions for this lens system. The strong intrinsic variability of the quasar also allows us to derive a time delay value of τCA=722±24\tau_{\rm CA} = 722 \pm 24 days between image C and A, in spite of modest overlap between their light curves in the current data set. Image C, which is predicted to lead all the other lensed quasar images, has undergone a sharp, monotonic flux increase of 60-75\% during 2014. A corresponding brightening is firmly predicted to occur in images A and B during 2016. The amplitude of this rise indicates that time delays involving all six known images in this system, including those of the demagnified central images D-F, will be obtainable from further ground-based monitoring of this system during the next few years.Comment: 9 pages, 9 figures, Version accepted for publication in Ap

    On the lack of correlation between Mg II 2796, 2803 Angstrom and Lyman alpha emission in lensed star-forming galaxies

    Get PDF
    We examine the Mg II 2796, 2803 Angstrom, Lyman alpha, and nebular line emission in five bright star-forming galaxies at 1.66<z<1.91 that have been gravitationally lensed by foreground galaxy clusters. All five galaxies show prominent Mg II emission and absorption in a P Cygni profile. We find no correlation between the equivalent widths of Mg II and Lyman alpha emission. The Mg II emission has a broader range of velocities than do the nebular emission line profiles; the Mg II emission is redshifted with respect to systemic by 100 to 200 km/s. When present, Lyman alpha is even more redshifted. The reddest components of Mg II and Lyman alpha emission have tails to 500-600 km/s, implying a strong outflow. The lack of correlation in the Mg II and Lyman alpha equivalent widths, the differing velocity profiles, and the high ratios of Mg II to nebular line fluxes together suggest that the bulk of Mg II emission does not ultimately arise as nebular line emission, but may instead be reprocessed stellar continuum emission.Comment: The Astrophysical Journal, in press. 6 pages, 2 figure

    Stellar Populations of Highly Magnified Lensed Galaxies: Young Starbursts at z~2

    Get PDF
    We present a comprehensive analysis of the rest-frame UV to near-IR spectral energy distributions and rest-frame optical spectra of four of the brightest gravitationally lensed galaxies in the literature: RCSGA 032727-132609 at z=1.70, MS1512-cB58 at z=2.73, SGAS J152745.1+065219 at z=2.76 and SGAS J122651.3+215220 at z=2.92. This includes new Spitzer imaging for RCSGA0327 as well as new spectra, near-IR imaging and Spitzer imaging for SGAS1527 and SGAS1226. Lensing magnifications of 3-4 magnitudes allow a detailed study of the stellar populations and physical conditions. We compare star formation rates as measured from the SED fit, the H-alpha and [OII] emission lines, and the UV+IR bolometric luminosity where 24 micron photometry is available. The SFR estimate from the SED fit is consistently higher than the other indicators, which suggests that the Calzetti dust extinction law used in the SED fitting is too flat for young star-forming galaxies at z~2. Our analysis finds similar stellar population parameters for all four lensed galaxies: stellar masses 3-7*10^9 M_sun, young ages ~ 100 Myr, little dust content E(B-V)=0.10-0.25, and star formation rates around 20-100 M_sun/yr. Compared to typical values for the galaxy population at z~2, this suggests we are looking at newly formed, starbursting systems that have only recently started the build-up of stellar mass. These results constitute the first detailed, uniform analysis of a sample of the growing number of strongly lensed galaxies known at z~2.Comment: 13 pages, 8 figures, Accepted to Ap
    corecore