779 research outputs found
A predictive phenomenological tool at small Bjorken-x
We present the results from global fits of inclusive DIS experimental data
using the Balitsky-Kovchegov equation with running coupling.Comment: 5 pages, 2 figures, prepared for the Proceedings of 'Hot Quarks 2010
Iteratively regularized Newton-type methods for general data misfit functionals and applications to Poisson data
We study Newton type methods for inverse problems described by nonlinear
operator equations  in Banach spaces where the Newton equations
 are regularized variationally using a general
data misfit functional and a convex regularization term. This generalizes the
well-known iteratively regularized Gauss-Newton method (IRGNM). We prove
convergence and convergence rates as the noise level tends to 0 both for an a
priori stopping rule and for a Lepski{\u\i}-type a posteriori stopping rule.
Our analysis includes previous order optimal convergence rate results for the
IRGNM as special cases. The main focus of this paper is on inverse problems
with Poisson data where the natural data misfit functional is given by the
Kullback-Leibler divergence. Two examples of such problems are discussed in
detail: an inverse obstacle scattering problem with amplitude data of the
far-field pattern and a phase retrieval problem. The performence of the
proposed method for these problems is illustrated in numerical examples
Anisotropic fragmentation in low-energy dissociative recombination
On a dense energy grid reaching up to 75 meV electron collision energy the
fragmentation angle and the kinetic energy release of neutral dissociative
recombination fragments have been studied in a twin merged beam experiment. The
anisotropy described by Legendre polynomials and the extracted rotational state
contributions were found to vary on a likewise narrow energy scale as the
rotationally averaged rate coefficient. For the first time angular dependences
higher than 2 order could be deduced. Moreover, a slight anisotropy at
zero collision energy was observed which is caused by the flattened velocity
distribution of the electron beam.Comment: 8 pages, 4 figures; The Article will be published in the proceedings
  of DR 2007, a symposium on Dissociative Recombination held in Ameland, The
  Netherlands (18.-23. July 2008); Reference 19 has been published meanwhile in
  S. Novotny, PRL 100, 193201 (2008
Enabling quantitative data analysis through e-infrastructures
This paper discusses how quantitative data analysis in the social sciences can engage with and exploit an e-Infrastructure. We highlight how a number of activities which are central to quantitative data analysis, referred to as ‘data management’, can benefit from e-infrastructure support. We conclude by discussing how these issues are relevant to the DAMES (Data Management through e-Social Science) research Node, an ongoing project that aims to develop e-Infrastructural resources for quantitative data analysis in the social sciences
Classical Scattering for a driven inverted Gaussian potential in terms of the chaotic invariant set
We study the classical electron scattering from a driven inverted Gaussian
potential, an open system, in terms of its chaotic invariant set. This chaotic
invariant set is described by a ternary horseshoe construction on an
appropriate Poincare surface of section. We find the development parameters
that describe the hyperbolic component of the chaotic invariant set. In
addition, we show that the hierarchical structure of the fractal set of
singularities of the scattering functions is the same as the structure of the
chaotic invariant set. Finally, we construct a symbolic encoding of the
hierarchical structure of the set of singularities of the scattering functions
and use concepts from the thermodynamical formalism to obtain one of the
measures of chaos of the fractal set of singularities, the topological entropy.Comment: accepted in Phy. Rev. 
An approximate empirical Bayesian method for large-scale linear-Gaussian inverse problems
We study Bayesian inference methods for solving linear inverse problems,
focusing on hierarchical formulations where the prior or the likelihood
function depend on unspecified hyperparameters. In practice, these
hyperparameters are often determined via an empirical Bayesian method that
maximizes the marginal likelihood function, i.e., the probability density of
the data conditional on the hyperparameters. Evaluating the marginal
likelihood, however, is computationally challenging for large-scale problems.
In this work, we present a method to approximately evaluate marginal likelihood
functions, based on a low-rank approximation of the update from the prior
covariance to the posterior covariance. We show that this approximation is
optimal in a minimax sense. Moreover, we provide an efficient algorithm to
implement the proposed method, based on a combination of the randomized SVD and
a spectral approximation method to compute square roots of the prior covariance
matrix. Several numerical examples demonstrate good performance of the proposed
method
What cost components are relevant for economic evaluations of palliative care, and what approaches are used to measure these costs? A systematic review
BACKGROUND: It is important to understand the costs of palliative and end-of-life care in order to inform decisions regarding cost allocation. However, economic research in palliative care is very limited and little is known about the range and extent of the costs that are involved in palliative care provision. AIM: To undertake a systematic review of the health and social care literature to determine the range of financial costs related to a palliative care approach and explore approaches used to measure these costs. DESIGN: A systematic review of empirical literature with thematic synthesis. Study quality was evaluated using the Weight of Evidence Framework. DATA SOURCES: The databases CINAHL, Cochrane, PsycINFO and Medline were searched from 1995 to November 2015 for empirical studies which presented data on the financial costs associated with palliative care. RESULTS: A total of 38 papers met our inclusion criteria. Components of palliative care costs were incurred within four broad domains: hospital care, community or home-based care, hospice care and informal care. These costs could be considered from the economic viewpoint of three providers: state or government, insurers/third-party/not-for-profit organisations and patient and family and/or society. A wide variety of costing approaches were used to derive costs. CONCLUSION: The evidence base regarding the economics of palliative care is sparse, particularly relating to the full economic costs of palliative care. Our review provides a framework for considering these costs from a variety of economic viewpoints; however, further research is required to develop and refine methodologies
Auxiliary-level-assisted operations with charge qubits in semiconductors
We present a new scheme for rotations of a charge qubit associated with a
singly ionized pair of donor atoms in a semiconductor host. The logical states
of such a qubit proposed recently by Hollenberg et al. are defined by the
lowest two energy states of the remaining valence electron localized around one
or another donor. We show that an electron located initially at one donor site
can be transferred to another donor site via an auxiliary molecular level
formed upon the hybridization of the excited states of two donors. The electron
transfer is driven by a single resonant microwave pulse in the case that the
energies of the lowest donor states coincide or two resonant pulses in the case
that they differ from each other. Depending on the pulse parameters, various
one-qubit operations, including the phase gate, the NOT gate, and the Hadamard
gate, can be realized in short times. Decoherence of an electron due to the
interaction with acoustic phonons is analyzed and shown to be weak enough for
coherent qubit manipulation being possible, at least in the proof-of-principle
experiments on one-qubit devices.Comment: Extended version of cond-mat/0411605 with detailed discussion of
  phonon-induced decoherence including dephasing and relaxation; to be
  published in JET
Quantum phase retrieval of a Rydberg wave packet using a half-cycle pulse
A terahertz half-cycle pulse was used to retrieve information stored as
quantum phase in an -state Rydberg atom data register. The register was
prepared as a wave packet with one state phase-reversed from the others (the
"marked bit"). A half-cycle pulse then drove a significant portion of the
electron probability into the flipped state via multimode interference.Comment: accepted by PR
Social preferences, accountability, and wage bargaining
We assess the extent of preferences for employment in a collective wage bargaining situation with heterogeneous workers. We vary the size of the union and introduce a treatment mechanism transforming the voting game into an individual allocation task. Our results show that highly productive workers do not take employment of low productive workers into account when making wage proposals, regardless of whether insiders determine the wage or all workers. The level of pro-social preferences is small in the voting game, while it increases as the game is transformed into an individual allocation task. We interpret this as an accountability effect
- …
