663 research outputs found

    A predictive phenomenological tool at small Bjorken-x

    Full text link
    We present the results from global fits of inclusive DIS experimental data using the Balitsky-Kovchegov equation with running coupling.Comment: 5 pages, 2 figures, prepared for the Proceedings of 'Hot Quarks 2010

    A Solution to Weed Control in Grassland Containing White Clover

    Get PDF
    Productive grass with white clover can lead to advantages both in forage quantity and quality, economics and in meeting wider expectations detailed in recent EU and UK policy. The ability to achieve this agronomic success is currently difficult due to a lack of options for broad spectrum weed control that also allow establishment or preservation of a white clover population. The aim of this paper is to demonstrate that 3730XL, developed by Corteva Agriscience, is a solution to this critical success factor. Data is presented from 16 efficacy trials (10 from established grassland and 5 from newly sown) where white clover cover of plots treated with 3730XL was recorded relative to an untreated plot. Data is also presented from 106 weed control trials, against a selection of species, demonstrating the efficacy of 3730XL split by grassland scenario. The evidence presented highlights the capability of 3730XL to both control a broad spectrum of weed species and allow the establishment or preservation of white clover. Consequently, growers are able to cultivate the associated benefits that this confers

    Classical Scattering for a driven inverted Gaussian potential in terms of the chaotic invariant set

    Full text link
    We study the classical electron scattering from a driven inverted Gaussian potential, an open system, in terms of its chaotic invariant set. This chaotic invariant set is described by a ternary horseshoe construction on an appropriate Poincare surface of section. We find the development parameters that describe the hyperbolic component of the chaotic invariant set. In addition, we show that the hierarchical structure of the fractal set of singularities of the scattering functions is the same as the structure of the chaotic invariant set. Finally, we construct a symbolic encoding of the hierarchical structure of the set of singularities of the scattering functions and use concepts from the thermodynamical formalism to obtain one of the measures of chaos of the fractal set of singularities, the topological entropy.Comment: accepted in Phy. Rev.

    An approximate empirical Bayesian method for large-scale linear-Gaussian inverse problems

    Full text link
    We study Bayesian inference methods for solving linear inverse problems, focusing on hierarchical formulations where the prior or the likelihood function depend on unspecified hyperparameters. In practice, these hyperparameters are often determined via an empirical Bayesian method that maximizes the marginal likelihood function, i.e., the probability density of the data conditional on the hyperparameters. Evaluating the marginal likelihood, however, is computationally challenging for large-scale problems. In this work, we present a method to approximately evaluate marginal likelihood functions, based on a low-rank approximation of the update from the prior covariance to the posterior covariance. We show that this approximation is optimal in a minimax sense. Moreover, we provide an efficient algorithm to implement the proposed method, based on a combination of the randomized SVD and a spectral approximation method to compute square roots of the prior covariance matrix. Several numerical examples demonstrate good performance of the proposed method

    Iteratively regularized Newton-type methods for general data misfit functionals and applications to Poisson data

    Get PDF
    We study Newton type methods for inverse problems described by nonlinear operator equations F(u)=gF(u)=g in Banach spaces where the Newton equations F′(un;un+1−un)=g−F(un)F'(u_n;u_{n+1}-u_n) = g-F(u_n) are regularized variationally using a general data misfit functional and a convex regularization term. This generalizes the well-known iteratively regularized Gauss-Newton method (IRGNM). We prove convergence and convergence rates as the noise level tends to 0 both for an a priori stopping rule and for a Lepski{\u\i}-type a posteriori stopping rule. Our analysis includes previous order optimal convergence rate results for the IRGNM as special cases. The main focus of this paper is on inverse problems with Poisson data where the natural data misfit functional is given by the Kullback-Leibler divergence. Two examples of such problems are discussed in detail: an inverse obstacle scattering problem with amplitude data of the far-field pattern and a phase retrieval problem. The performence of the proposed method for these problems is illustrated in numerical examples

    Local Expansion of Donation After Circulatory Death Kidney Transplant Activity Improves Waitlisted Outcomes and Addresses Inequities of Access to Transplantation

    Get PDF
    In the United Kingdom, donation after circulatory death (DCD) kidney transplant activity has increased rapidly, but marked regional variation persists. We report how increased DCD kidney transplant activity influenced waitlisted outcomes for a single center. Between 2002–2003 and 2011–2012, 430 (54%) DCD and 361 (46%) donation after brain death (DBD) kidney-only transplants were performed at the Cambridge Transplant Centre, with a higher proportion of DCD donors fulfilling expanded criteria status (41% DCD vs. 32% DBD; p = 0.01). Compared with U.K. outcomes, for which the proportion of DCD:DBD kidney transplants performed is lower (25%; p 65 years; waiting time 730 vs. 1357 days nationally; p < 0.001), who received predominantly DCD kidneys from older donors (mean donor age 64 years), whereas younger recipients received equal proportions of living donor, DBD and DCD kidney transplants. Death-censored kidney graft survival was nevertheless comparable for younger and older recipients, although transplantation conferred a survival benefit from listing for only younger recipients. Local expansion in DCD kidney transplant activity improves survival outcomes for younger patients and addresses inequity of access to transplantation for older recipients

    Auxiliary-level-assisted operations with charge qubits in semiconductors

    Full text link
    We present a new scheme for rotations of a charge qubit associated with a singly ionized pair of donor atoms in a semiconductor host. The logical states of such a qubit proposed recently by Hollenberg et al. are defined by the lowest two energy states of the remaining valence electron localized around one or another donor. We show that an electron located initially at one donor site can be transferred to another donor site via an auxiliary molecular level formed upon the hybridization of the excited states of two donors. The electron transfer is driven by a single resonant microwave pulse in the case that the energies of the lowest donor states coincide or two resonant pulses in the case that they differ from each other. Depending on the pulse parameters, various one-qubit operations, including the phase gate, the NOT gate, and the Hadamard gate, can be realized in short times. Decoherence of an electron due to the interaction with acoustic phonons is analyzed and shown to be weak enough for coherent qubit manipulation being possible, at least in the proof-of-principle experiments on one-qubit devices.Comment: Extended version of cond-mat/0411605 with detailed discussion of phonon-induced decoherence including dephasing and relaxation; to be published in JET

    Anisotropic fragmentation in low-energy dissociative recombination

    Full text link
    On a dense energy grid reaching up to 75 meV electron collision energy the fragmentation angle and the kinetic energy release of neutral dissociative recombination fragments have been studied in a twin merged beam experiment. The anisotropy described by Legendre polynomials and the extracted rotational state contributions were found to vary on a likewise narrow energy scale as the rotationally averaged rate coefficient. For the first time angular dependences higher than 2nd^{nd} order could be deduced. Moreover, a slight anisotropy at zero collision energy was observed which is caused by the flattened velocity distribution of the electron beam.Comment: 8 pages, 4 figures; The Article will be published in the proceedings of DR 2007, a symposium on Dissociative Recombination held in Ameland, The Netherlands (18.-23. July 2008); Reference 19 has been published meanwhile in S. Novotny, PRL 100, 193201 (2008
    • …
    corecore