779 research outputs found

    A predictive phenomenological tool at small Bjorken-x

    Full text link
    We present the results from global fits of inclusive DIS experimental data using the Balitsky-Kovchegov equation with running coupling.Comment: 5 pages, 2 figures, prepared for the Proceedings of 'Hot Quarks 2010

    Iteratively regularized Newton-type methods for general data misfit functionals and applications to Poisson data

    Get PDF
    We study Newton type methods for inverse problems described by nonlinear operator equations F(u)=gF(u)=g in Banach spaces where the Newton equations F(un;un+1un)=gF(un)F'(u_n;u_{n+1}-u_n) = g-F(u_n) are regularized variationally using a general data misfit functional and a convex regularization term. This generalizes the well-known iteratively regularized Gauss-Newton method (IRGNM). We prove convergence and convergence rates as the noise level tends to 0 both for an a priori stopping rule and for a Lepski{\u\i}-type a posteriori stopping rule. Our analysis includes previous order optimal convergence rate results for the IRGNM as special cases. The main focus of this paper is on inverse problems with Poisson data where the natural data misfit functional is given by the Kullback-Leibler divergence. Two examples of such problems are discussed in detail: an inverse obstacle scattering problem with amplitude data of the far-field pattern and a phase retrieval problem. The performence of the proposed method for these problems is illustrated in numerical examples

    Anisotropic fragmentation in low-energy dissociative recombination

    Full text link
    On a dense energy grid reaching up to 75 meV electron collision energy the fragmentation angle and the kinetic energy release of neutral dissociative recombination fragments have been studied in a twin merged beam experiment. The anisotropy described by Legendre polynomials and the extracted rotational state contributions were found to vary on a likewise narrow energy scale as the rotationally averaged rate coefficient. For the first time angular dependences higher than 2nd^{nd} order could be deduced. Moreover, a slight anisotropy at zero collision energy was observed which is caused by the flattened velocity distribution of the electron beam.Comment: 8 pages, 4 figures; The Article will be published in the proceedings of DR 2007, a symposium on Dissociative Recombination held in Ameland, The Netherlands (18.-23. July 2008); Reference 19 has been published meanwhile in S. Novotny, PRL 100, 193201 (2008

    Enabling quantitative data analysis through e-infrastructures

    Get PDF
    This paper discusses how quantitative data analysis in the social sciences can engage with and exploit an e-Infrastructure. We highlight how a number of activities which are central to quantitative data analysis, referred to as ‘data management’, can benefit from e-infrastructure support. We conclude by discussing how these issues are relevant to the DAMES (Data Management through e-Social Science) research Node, an ongoing project that aims to develop e-Infrastructural resources for quantitative data analysis in the social sciences

    Classical Scattering for a driven inverted Gaussian potential in terms of the chaotic invariant set

    Full text link
    We study the classical electron scattering from a driven inverted Gaussian potential, an open system, in terms of its chaotic invariant set. This chaotic invariant set is described by a ternary horseshoe construction on an appropriate Poincare surface of section. We find the development parameters that describe the hyperbolic component of the chaotic invariant set. In addition, we show that the hierarchical structure of the fractal set of singularities of the scattering functions is the same as the structure of the chaotic invariant set. Finally, we construct a symbolic encoding of the hierarchical structure of the set of singularities of the scattering functions and use concepts from the thermodynamical formalism to obtain one of the measures of chaos of the fractal set of singularities, the topological entropy.Comment: accepted in Phy. Rev.

    An approximate empirical Bayesian method for large-scale linear-Gaussian inverse problems

    Full text link
    We study Bayesian inference methods for solving linear inverse problems, focusing on hierarchical formulations where the prior or the likelihood function depend on unspecified hyperparameters. In practice, these hyperparameters are often determined via an empirical Bayesian method that maximizes the marginal likelihood function, i.e., the probability density of the data conditional on the hyperparameters. Evaluating the marginal likelihood, however, is computationally challenging for large-scale problems. In this work, we present a method to approximately evaluate marginal likelihood functions, based on a low-rank approximation of the update from the prior covariance to the posterior covariance. We show that this approximation is optimal in a minimax sense. Moreover, we provide an efficient algorithm to implement the proposed method, based on a combination of the randomized SVD and a spectral approximation method to compute square roots of the prior covariance matrix. Several numerical examples demonstrate good performance of the proposed method

    What cost components are relevant for economic evaluations of palliative care, and what approaches are used to measure these costs? A systematic review

    Get PDF
    BACKGROUND: It is important to understand the costs of palliative and end-of-life care in order to inform decisions regarding cost allocation. However, economic research in palliative care is very limited and little is known about the range and extent of the costs that are involved in palliative care provision. AIM: To undertake a systematic review of the health and social care literature to determine the range of financial costs related to a palliative care approach and explore approaches used to measure these costs. DESIGN: A systematic review of empirical literature with thematic synthesis. Study quality was evaluated using the Weight of Evidence Framework. DATA SOURCES: The databases CINAHL, Cochrane, PsycINFO and Medline were searched from 1995 to November 2015 for empirical studies which presented data on the financial costs associated with palliative care. RESULTS: A total of 38 papers met our inclusion criteria. Components of palliative care costs were incurred within four broad domains: hospital care, community or home-based care, hospice care and informal care. These costs could be considered from the economic viewpoint of three providers: state or government, insurers/third-party/not-for-profit organisations and patient and family and/or society. A wide variety of costing approaches were used to derive costs. CONCLUSION: The evidence base regarding the economics of palliative care is sparse, particularly relating to the full economic costs of palliative care. Our review provides a framework for considering these costs from a variety of economic viewpoints; however, further research is required to develop and refine methodologies

    Auxiliary-level-assisted operations with charge qubits in semiconductors

    Full text link
    We present a new scheme for rotations of a charge qubit associated with a singly ionized pair of donor atoms in a semiconductor host. The logical states of such a qubit proposed recently by Hollenberg et al. are defined by the lowest two energy states of the remaining valence electron localized around one or another donor. We show that an electron located initially at one donor site can be transferred to another donor site via an auxiliary molecular level formed upon the hybridization of the excited states of two donors. The electron transfer is driven by a single resonant microwave pulse in the case that the energies of the lowest donor states coincide or two resonant pulses in the case that they differ from each other. Depending on the pulse parameters, various one-qubit operations, including the phase gate, the NOT gate, and the Hadamard gate, can be realized in short times. Decoherence of an electron due to the interaction with acoustic phonons is analyzed and shown to be weak enough for coherent qubit manipulation being possible, at least in the proof-of-principle experiments on one-qubit devices.Comment: Extended version of cond-mat/0411605 with detailed discussion of phonon-induced decoherence including dephasing and relaxation; to be published in JET

    Quantum phase retrieval of a Rydberg wave packet using a half-cycle pulse

    Get PDF
    A terahertz half-cycle pulse was used to retrieve information stored as quantum phase in an NN-state Rydberg atom data register. The register was prepared as a wave packet with one state phase-reversed from the others (the "marked bit"). A half-cycle pulse then drove a significant portion of the electron probability into the flipped state via multimode interference.Comment: accepted by PR

    Social preferences, accountability, and wage bargaining

    Get PDF
    We assess the extent of preferences for employment in a collective wage bargaining situation with heterogeneous workers. We vary the size of the union and introduce a treatment mechanism transforming the voting game into an individual allocation task. Our results show that highly productive workers do not take employment of low productive workers into account when making wage proposals, regardless of whether insiders determine the wage or all workers. The level of pro-social preferences is small in the voting game, while it increases as the game is transformed into an individual allocation task. We interpret this as an accountability effect
    corecore