569 research outputs found

    Aplicación de una red social como herramienta docente en asignaturas tecnológicas

    Get PDF
    Póster presentado en: VIII Jornadas de Innovación Docente de la UBU, Burgos, 5 de abril de 2016, organizadas por el Instituto de Formación e Innovación Educativa-IFIE de la Universidad de Burgo

    Molecular phylogenetics of Haustrinae and Pagodulinae (Neogastropoda: Muricidae) with a focus on New Zealand species

    Get PDF
    We investigated the relationships of the muricid subfamilies Haustrinae, Pagodulinae and the genus Poirieria using a molecular phylogenetic approach on a dataset of three mitochondrial genes (12S, 16S and COI). These taxa form a well-supported clade within Muricidae. The phylogenetic analysis suggests that Poirieria is the sister group of Pagodulinae and that Axymene, Comptella, Pagodula, Paratrophon, Trophonella, Trophonopsis, Xymene, Xymenella, Xymenopsis and Zeatrophon are all worthy of genus-level rank within this subfamily. We propose the use of Enixotrophon for a group of species currently classified in Pagodula. The results also support a new taxonomic arrangement in Haustrinae

    Geometrical control of the magnetization direction in high aspect-ratio PdNi ferromagnetic nano-electrodes

    Full text link
    We present a study of electron-beam evaporated Pd0.4Ni0.6 alloy thin films by means of ferromagnetic resonance measurements on extended films of varying thickness and anisotropic magnetoresistance measurements of lithographically patterned high aspect-ratio ferromagnetic electrodes, respectively. The results reveal that the direction of the magnetization strongly depends on the electrode lateral dimensions, transitioning from in-plane magnetization for extended films to out-of-the-plane magnetization for electrode widths below 2-3 microns, reaching 58 degrees off-plane for 100 nm-wide nanoelectrodes.Comment: Preprint submitted to PRB (14 pages, 4 figures

    Relaxation and Landau-Zener experiments down to 100 mK in ferritin

    Get PDF
    Temperature-independent magnetic viscosity in ferritin has been observed from 2 K down to 100 mK, proving that quantum tunneling plays the main role in these particles at low temperature. Magnetic relaxation has also been studied using the Landau-Zener method making the system crossing zero resonant field at different rates, alpha=dH/dt, ranging from 10^{-5} to 10^{-3} T/s, and at different temperatures, from 150 mK up to the blocking temperature. We propose a new Tln(Delta H_{eff}/tau_0 alpha) scaling law for the Landau-Zener probability in a system distributed in volumes, where Delta H_{eff} is the effective width of the zero field resonance.Comment: 13 pages, 4 postscript figure

    Predictors of return to driving after stroke

    Get PDF
    OBJECTIVE: While returning to driving is a major concern for many stroke survivors, predicting who will return to driving after a stroke is often difficult for rehabilitation professionals. The primary aim of this study was to identify patient factors present at admission to an inpatient rehabilitation hospital that can be used to identify which patients with acute stroke will and will not return to driving. DESIGN: After comparing returners and non-returners on demographic and clinical characteristics, a logistic regression model with return to driving as the outcome variable was built using the backward stepwise method. RESULTS: Thirty-one percent (48/156) of patients who had been driving before their stroke had returned to driving six months post-stroke. The final regression model, using FIM cognition and lower extremity Motricity Index scores, predicted the driving outcome with an accuracy of 75% (107/143). CONCLUSIONS: Patients with lower FIM cognition and lower extremity Motricity Index scores at admission to inpatient rehabilitation are less likely to return to driving at six months. This model could be used by rehabilitation professionals to help counsel patients and their families and focus treatment goals

    Dynamical spin injection at a quasi-one-dimensional ferromagnet-graphene interface

    Get PDF
    We present a study of dynamical spin injection from a three-dimensional ferromagnet into two-dimensional single-layer graphene. Comparative ferromagnetic resonance (FMR) studies of ferromagnet/graphene strips buried underneath the central line of a coplanar waveguide show that the FMR linewidth broadening is the largest when the graphene layer protrudes laterally away from the ferromagnetic strip, indicating that the spin current is injected into the graphene areas away from the area directly underneath the ferromagnet being excited. Our results confirm that the observed damping is indeed a signature of dynamical spin injection, wherein a pure spin current is pumped into the single-layer graphene from the precessing magnetization of the ferromagnet. The observed spin pumping efficiency is difficult to reconcile with the expected backflow of spins according to the standard spin pumping theory and the characteristics of graphene, and constitutes an enigma for spin pumping in two-dimensional structures

    Quadratic transverse anisotropy term due to dislocations in Mn12-Ac directly obtained by EPR spectroscopy

    Get PDF
    High-Sensitivity Electron Paramagnetic Resonance experiments have been carried out in fresh and stressed Mn12-Acetate single crystals for frequencies ranging from 40 GHz up to 110 GHz. The high number of crystal dislocations formed in the stressing process introduces a E(S_x^2-S_y^2) transverse anisotropy term in the spin hamiltonian. From the behaviour of the resonant absorptions on the applied transverse magnetic field we have obtained an average value for E = 22 mK, corresponding to a concentration of dislocations per unit cell of c = 10^-3.Comment: 13 pages and 4 figure

    On the Energy Transfer Performance of Mechanical Nanoresonators Coupled with Electromagnetic Fields

    Get PDF
    We study the energy transfer performance in electrically and magnetically coupled mechanical nanoresonators. Using the resonant scattering theory, we show that magnetically coupled resonators can achieve the same energy transfer performance as for their electrically coupled counterparts, or even outperform them within the scale of interest. Magnetic and electric coupling are compared in the Nanotube Radio, a realistic example of a nano-scale mechanical resonator. The energy transfer performance is also discussed for a newly proposed bio-nanoresonator composed of a magnetosomes coated with a net of protein fibers.Comment: 9 Pages, 3 Figure

    Magnetic qubits as hardware for quantum computers

    Full text link
    We propose two potential realisations for quantum bits based on nanometre scale magnetic particles of large spin S and high anisotropy molecular clusters. In case (1) the bit-value basis states |0> and |1> are the ground and first excited spin states Sz = S and S-1, separated by an energy gap given by the ferromagnetic resonance (FMR) frequency. In case (2), when there is significant tunnelling through the anisotropy barrier, the qubit states correspond to the symmetric, |0>, and antisymmetric, |1>, combinations of the two-fold degenerate ground state Sz = +- S. In each case the temperature of operation must be low compared to the energy gap, \Delta, between the states |0> and |1>. The gap \Delta in case (2) can be controlled with an external magnetic field perpendicular to the easy axis of the molecular cluster. The states of different molecular clusters and magnetic particles may be entangled by connecting them by superconducting lines with Josephson switches, leading to the potential for quantum computing hardware.Comment: 17 pages, 3 figure
    corecore