We propose two potential realisations for quantum bits based on nanometre
scale magnetic particles of large spin S and high anisotropy molecular
clusters. In case (1) the bit-value basis states |0> and |1> are the ground and
first excited spin states Sz = S and S-1, separated by an energy gap given by
the ferromagnetic resonance (FMR) frequency. In case (2), when there is
significant tunnelling through the anisotropy barrier, the qubit states
correspond to the symmetric, |0>, and antisymmetric, |1>, combinations of the
two-fold degenerate ground state Sz = +- S. In each case the temperature of
operation must be low compared to the energy gap, \Delta, between the states
|0> and |1>. The gap \Delta in case (2) can be controlled with an external
magnetic field perpendicular to the easy axis of the molecular cluster. The
states of different molecular clusters and magnetic particles may be entangled
by connecting them by superconducting lines with Josephson switches, leading to
the potential for quantum computing hardware.Comment: 17 pages, 3 figure