36 research outputs found

    An examination of the genotyping error detection function of SIMWALK2

    Get PDF
    This investigation was undertaken to assess the sensitivity and specificity of the genotyping error detection function of the computer program SIMWALK2. We chose to examine chromosome 22, which had 7 microsatellite markers, from a single simulated replicate (330 pedigrees with a pattern of missing genotype data similar to the Framingham families). We created genotype errors at five overall frequencies (0.0, 0.025, 0.050, 0.075, and 0.100) and applied SIMWALK2 to each of these five data sets, respectively assuming that the total error rate (specified in the program), was at each of these same five levels. In this data set, up to an assumed error rate of 10%, only 50% of the Mendelian-consistent mistypings were found under any level of true errors. And since as many as 70% of the errors detected were false-positives, blanking suspect genotypes (at any error probability) will result in a reduction of statistical power due to the concomitant blanking of correctly typed alleles. This work supports the conclusion that allowing for genotyping errors within likelihood calculations during statistical analysis may be preferable to choosing an arbitrary cut-off

    A colimit decomposition for homotopy algebras in Cat

    Get PDF
    Badzioch showed that in the category of simplicial sets each homotopy algebra of a Lawvere theory is weakly equivalent to a strict algebra. In seeking to extend this result to other contexts Rosicky observed a key point to be that each homotopy colimit in simplicial sets admits a decomposition into a homotopy sifted colimit of finite coproducts, and asked the author whether a similar decomposition holds in the 2-category of categories Cat. Our purpose in the present paper is to show that this is the case.Comment: Some notation changed; small amount of exposition added in intr

    The shock wave ignition of dusts

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76582/1/AIAA-9095-997.pd

    Group actions on Segal operads

    Full text link
    We give a Quillen equivalence between model structures for simplicial operads, described via the theory of operads, and Segal operads, thought of as certain reduced dendroidal spaces. We then extend this result to give an Quillen equivalence between the model structures for simplicial operads equipped with a group action and the corresponding Segal operads.Comment: Revised version. Accepted to Isr J Mat

    Genome-wide linkage analysis of 1,233 prostate cancer pedigrees from the International Consortium for prostate cancer Genetics using novel sumLINK and sumLOD analyses

    Full text link
    BACKGROUND Prostate cancer (PC) is generally believed to have a strong inherited component, but the search for susceptibility genes has been hindered by the effects of genetic heterogeneity. The recently developed sumLINK and sumLOD statistics are powerful tools for linkage analysis in the presence of heterogeneity. METHODS We performed a secondary analysis of 1,233 PC pedigrees from the International Consortium for Prostate Cancer Genetics (ICPCG) using two novel statistics, the sumLINK and sumLOD. For both statistics, dominant and recessive genetic models were considered. False discovery rate (FDR) analysis was conducted to assess the effects of multiple testing. RESULTS Our analysis identified significant linkage evidence at chromosome 22q12, confirming previous findings by the initial conventional analyses of the same ICPCG data. Twelve other regions were identified with genome-wide suggestive evidence for linkage. Seven regions (1q23, 5q11, 5q35, 6p21, 8q12, 11q13, 20p11–q11) are near loci previously identified in the initial ICPCG pooled data analysis or the subset of aggressive PC pedigrees. Three other regions (1p12, 8p23, 19q13) confirm loci reported by others, and two (2p24, 6q27) are novel susceptibility loci. FDR testing indicates that over 70% of these results are likely true positive findings. Statistical recombinant mapping narrowed regions to an average of 9 cM. CONCLUSIONS Our results represent genomic regions with the greatest consistency of positive linkage evidence across a very large collection of high-risk PC pedigrees using new statistical tests that deal powerfully with heterogeneity. These regions are excellent candidates for further study to identify PC predisposition genes. Prostate 70: 735–744, 2010. © 2010 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71371/1/21106_ftp.pd

    Chromosomes 4 and 8 implicated in a genome wide SNP linkage scan of 762 prostate cancer families collected by the ICPCG

    Full text link
    BACKGROUND In spite of intensive efforts, understanding of the genetic aspects of familial prostate cancer (PC) remains largely incomplete. In a previous microsatellite‐based linkage scan of 1,233 PC families, we identified suggestive evidence for linkage (i.e., LOD ≥ 1.86) at 5q12, 15q11, 17q21, 22q12, and two loci on 8p, with additional regions implicated in subsets of families defined by age at diagnosis, disease aggressiveness, or number of affected members. METHODS In an attempt to replicate these findings and increase linkage resolution, we used the Illumina 6000 SNP linkage panel to perform a genome‐wide linkage scan of an independent set of 762 multiplex PC families, collected by 11 International Consortium for Prostate Cancer Genetics (ICPCG) groups. RESULTS Of the regions identified previously, modest evidence of replication was observed only on the short arm of chromosome 8, where HLOD scores of 1.63 and 3.60 were observed in the complete set of families and families with young average age at diagnosis, respectively. The most significant linkage signals found in the complete set of families were observed across a broad, 37 cM interval on 4q13–25, with LOD scores ranging from 2.02 to 2.62, increasing to 4.50 in families with older average age at diagnosis. In families with multiple cases presenting with more aggressive disease, LOD scores over 3.0 were observed at 8q24 in the vicinity of previously identified common PC risk variants, as well as MYC , an important gene in PC biology. CONCLUSIONS These results will be useful in prioritizing future susceptibility gene discovery efforts in this common cancer. Prostate 72:410–426, 2012. © 2011 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90245/1/21443_ftp.pd

    Analysis of Xq27-28 linkage in the international consortium for prostate cancer genetics (ICPCG) families.

    Get PDF
    BACKGROUND: Genetic variants are likely to contribute to a portion of prostate cancer risk. Full elucidation of the genetic etiology of prostate cancer is difficult because of incomplete penetrance and genetic and phenotypic heterogeneity. Current evidence suggests that genetic linkage to prostate cancer has been found on several chromosomes including the X; however, identification of causative genes has been elusive. METHODS: Parametric and non-parametric linkage analyses were performed using 26 microsatellite markers in each of 11 groups of multiple-case prostate cancer families from the International Consortium for Prostate Cancer Genetics (ICPCG). Meta-analyses of the resultant family-specific linkage statistics across the entire 1,323 families and in several predefined subsets were then performed. RESULTS: Meta-analyses of linkage statistics resulted in a maximum parametric heterogeneity lod score (HLOD) of 1.28, and an allele-sharing lod score (LOD) of 2.0 in favor of linkage to Xq27-q28 at 138 cM. In subset analyses, families with average age at onset less than 65 years exhibited a maximum HLOD of 1.8 (at 138 cM) versus a maximum regional HLOD of only 0.32 in families with average age at onset of 65 years or older. Surprisingly, the subset of families with only 2-3 affected men and some evidence of male-to-male transmission of prostate cancer gave the strongest evidence of linkage to the region (HLOD = 3.24, 134 cM). For this subset, the HLOD was slightly increased (HLOD = 3.47 at 134 cM) when families used in the original published report of linkage to Xq27-28 were excluded. CONCLUSIONS: Although there was not strong support for linkage to the Xq27-28 region in the complete set of families, the subset of families with earlier age at onset exhibited more evidence of linkage than families with later onset of disease. A subset of families with 2-3 affected individuals and with some evidence of male to male disease transmission showed stronger linkage signals. Our results suggest that the genetic basis for prostate cancer in our families is much more complex than a single susceptibility locus on the X chromosome, and that future explorations of the Xq27-28 region should focus on the subset of families identified here with the strongest evidence of linkage to this region.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    An examination of the genotyping error detection function of SIMWALK2-2

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "An examination of the genotyping error detection function of SIMWALK2"</p><p>http://www.biomedcentral.com/1471-2156/4/s1/S40</p><p>BMC Genetics 2003;4(Suppl 1):S40-S40.</p><p>Published online 31 Dec 2003</p><p>PMCID:PMC1866476.</p><p></p
    corecore