255 research outputs found
A Comparison of Maps and Power Spectra Determined from South Pole Telescope and Planck Data
We study the consistency of 150 GHz data from the South Pole Telescope (SPT)
and 143 GHz data from the Planck satellite over the patch of sky covered by the
SPT-SZ survey. We first visually compare the maps and find that the residuals
appear consistent with noise after accounting for differences in angular
resolution and filtering. We then calculate (1) the cross-spectrum between two
independent halves of SPT data, (2) the cross-spectrum between two independent
halves of Planck data, and (3) the cross-spectrum between SPT and Planck data.
We find the three cross-spectra are well-fit (PTE = 0.30) by the null
hypothesis in which both experiments have measured the same sky map up to a
single free calibration parameter---i.e., we find no evidence for systematic
errors in either data set. As a by-product, we improve the precision of the SPT
calibration by nearly an order of magnitude, from 2.6% to 0.3% in power.
Finally, we compare all three cross-spectra to the full-sky Planck power
spectrum and find marginal evidence for differences between the power spectra
from the SPT-SZ footprint and the full sky. We model these differences as a
power law in spherical harmonic multipole number. The best-fit value of this
tilt is consistent among the three cross-spectra in the SPT-SZ footprint,
implying that the source of this tilt is a sample variance fluctuation in the
SPT-SZ region relative to the full sky. The consistency of cosmological
parameters derived from these datasets is discussed in a companion paper.Comment: 15 pages, 9 figures. Published in The Astrophysical Journal. Current
arxiv version matches published versio
Consistency of cosmic microwave background temperature measurements in three frequency bands in the 2500-square-degree SPT-SZ survey
We present an internal consistency test of South Pole Telescope (SPT)
measurements of the cosmic microwave background (CMB) temperature anisotropy
using three-band data from the SPT-SZ survey. These measurements are made from
observations of ~2500 deg^2 of sky in three frequency bands centered at 95,
150, and 220 GHz. We combine the information from these three bands into six
semi-independent estimates of the CMB power spectrum (three single-frequency
power spectra and three cross-frequency spectra) over the multipole range 650 <
l < 3000. We subtract an estimate of foreground power from each power spectrum
and evaluate the consistency among the resulting CMB-only spectra. We determine
that the six foreground-cleaned power spectra are consistent with the null
hypothesis, in which the six cleaned spectra contain only CMB power and noise.
A fit of the data to this model results in a chi-squared value of 236.3 for 235
degrees of freedom, and the probability to exceed this chi-squared value is
46%.Comment: 21 pages, 4 figures, current version matches version published in
JCA
A Comparison of Cosmological Parameters Determined from CMB Temperature Power Spectra from the South Pole Telescope and the Planck Satellite
The Planck cosmic microwave background (CMB) temperature data are best fit
with a LCDM model that is in mild tension with constraints from other
cosmological probes. The South Pole Telescope (SPT) 2540 SPT-SZ
survey offers measurements on sub-degree angular scales (multipoles ) with sufficient precision to use as an independent check of
the Planck data. Here we build on the recent joint analysis of the SPT-SZ and
Planck data in \citet{hou17} by comparing LCDM parameter estimates using the
temperature power spectrum from both data sets in the SPT-SZ survey region. We
also restrict the multipole range used in parameter fitting to focus on modes
measured well by both SPT and Planck, thereby greatly reducing sample variance
as a driver of parameter differences and creating a stringent test for
systematic errors. We find no evidence of systematic errors from such tests.
When we expand the maximum multipole of SPT data used, we see low-significance
shifts in the angular scale of the sound horizon and the physical baryon and
cold dark matter densities, with a resulting trend to higher Hubble constant.
When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky
data but keep the multipole range restricted, we find differences in the
parameters and . We perform further checks, investigating
instrumental effects and modeling assumptions, and we find no evidence that the
effects investigated are responsible for any of the parameter shifts. Taken
together, these tests reveal no evidence for systematic errors in SPT or Planck
data in the overlapping sky coverage and multipole range and, at most, weak
evidence for a breakdown of LCDM or systematic errors influencing either the
Planck data outside the SPT-SZ survey area or the SPT data at .Comment: 14 pages, 7 figures. Updated 1 figure and expanded on the reasoning
for fixing the affect of lensing on the power spectrum instead of varying
Alen
Ecological Invasion, Roughened Fronts, and a Competitor's Extreme Advance: Integrating Stochastic Spatial-Growth Models
Both community ecology and conservation biology seek further understanding of
factors governing the advance of an invasive species. We model biological
invasion as an individual-based, stochastic process on a two-dimensional
landscape. An ecologically superior invader and a resident species compete for
space preemptively. Our general model includes the basic contact process and a
variant of the Eden model as special cases. We employ the concept of a
"roughened" front to quantify effects of discreteness and stochasticity on
invasion; we emphasize the probability distribution of the front-runner's
relative position. That is, we analyze the location of the most advanced
invader as the extreme deviation about the front's mean position. We find that
a class of models with different assumptions about neighborhood interactions
exhibit universal characteristics. That is, key features of the invasion
dynamics span a class of models, independently of locally detailed demographic
rules. Our results integrate theories of invasive spatial growth and generate
novel hypotheses linking habitat or landscape size (length of the invading
front) to invasion velocity, and to the relative position of the most advanced
invader.Comment: The original publication is available at
www.springerlink.com/content/8528v8563r7u2742
From Classical Genetics to Quantitative Genetics to Systems Biology: Modeling Epistasis
Gene expression data has been used in lieu of phenotype in both classical and quantitative genetic settings. These two disciplines have separate approaches to measuring and interpreting epistasis, which is the interaction between alleles at different loci. We propose a framework for estimating and interpreting epistasis from a classical experiment that combines the strengths of each approach. A regression analysis step accommodates the quantitative nature of expression measurements by estimating the effect of gene deletions plus any interaction. Effects are selected by significance such that a reduced model describes each expression trait. We show how the resulting models correspond to specific hierarchical relationships between two regulator genes and a target gene. These relationships are the basic units of genetic pathways and genomic system diagrams. Our approach can be extended to analyze data from a variety of experiments, multiple loci, and multiple environments
Genetic Regulation of Zfp30, CXCL1, and Neutrophilic Inflammation in Murine Lung
Allergic asthma is a complex disease characterized in part by granulocytic inflammation of the airways. In addition to eosinophils, neutrophils (PMN) are also present, particularly in cases of severe asthma. We sought to identify the genetic determinants of neutrophilic inflammation in a mouse model of house dust mite (HDM)-induced asthma. We applied an HDM model of allergic asthma to the eight founder strains of the Collaborative Cross (CC) and 151 incipient lines of the CC (preCC). Lung lavage fluid was analyzed for PMN count and the concentration of CXCL1, a hallmark PMN chemokine. PMN and CXCL1 were strongly correlated in preCC mice. We used quantitative trait locus (QTL) mapping to identify three variants affecting PMN, one of which colocalized with a QTL for CXCL1 on chromosome (Chr) 7. We used lung eQTL data to implicate a variant in the gene Zfp30 in the CXCL1/PMN response. This genetic variant regulates both CXCL1 and PMN by altering Zfp30 expression, and we model the relationships between the QTL and these three endophenotypes. We show that Zfp30 is expressed in airway epithelia in the normal mouse lung and that altering Zfp30 expression in vitro affects CXCL1 responses to an immune stimulus. Our results provide strong evidence that Zfp30 is a novel regulator of neutrophilic airway inflammation
Improving Cosmological Constraints from Galaxy Cluster Number Counts with CMB-cluster-lensing Data: Results from the SPT-SZ Survey and Forecasts for the Future
We show the improvement to cosmological constraints from galaxy cluster surveys with the addition of cosmic microwave background (CMB)-cluster lensing data. We explore the cosmological implications of adding mass information from the 3.1 sigma detection of gravitational lensing of the CMB by galaxy clusters to the Sunyaev-Zel'dovich (SZ) selected galaxy cluster sample from the 2500 deg(2) SPT-SZ survey and targeted optical and X-ray follow-up data. In the ACDM model, the combination of the cluster sample with the Planck power spectrum measurements prefers sigma(8) (Omega(m)/0.3)(0.5) = 0.831 +/- 0.020. Adding the cluster data reduces the uncertainty on this quantity by a factor of 1.4, which is unchanged whether the 3.1 sigma CMB-cluster lensing measurement is included or not. We then forecast the impact of CMB-cluster lensing measurements with future cluster catalogs. Adding CMB-cluster lensing measurements to the SZ cluster catalog of the ongoing SPT-3G survey is expected to improve the expected constraint on the dark energy equation of state w by a factor of 1.3 to sigma(w) = 0.19. We find the largest improvements from CMB-cluster lensing measurements to be for sigma(8), where adding CMB-cluster lensing data to the cluster number counts reduces the expected uncertainty on sigma(8) by respective factors of 2.4 and 3.6 for SPT-3G and CMB-S4
- …