363 research outputs found
Functional modes of proteins are among the most robust ones
It is shown that a small subset of modes which are likely to be involved in
protein functional motions of large amplitude can be determined by retaining
the most robust normal modes obtained using different protein models. This
result should prove helpful in the context of several applications proposed
recently, like for solving difficult molecular replacement problems or for
fitting atomic structures into low-resolution electron density maps. Moreover,
it may also pave the way for the development of methods allowing to predict
such motions accurately.Comment: 4 pages, 5 figure
Driving calmodulin protein towards conformational shift by changing ionization states of select residues
Proteins are complex systems made up of many conformational sub-states which are mainly determined by the folded structure. External factors such as solvent type, temperature, pH and ionic strength play a very important role in the conformations sampled by proteins. Here we study the conformational multiplicity of calmodulin (CaM) which is a protein that plays an important role in calcium signaling pathways in the eukaryotic cells. CaM can bind to a variety of other proteins or small organic compounds, and mediates different physiological processes by activating various enzymes. Binding of calcium ions and proteins or small organic molecules to CaM induces large conformational changes that are distinct to each interacting partner. In particular, we discuss the effect of pH variation on the conformations of CaM. By using the pKa values of the charged residues as a basis to assign protonation states, the conformational changes induced in CaM by reducing the pH are studied by molecular dynamics simulations. Our current view suggests that at high pH, barrier crossing to the compact form is prevented by repulsive electrostatic interactions between the two lobes. At reduced pH, not only is barrier crossing facilitated by protonation of residues, but also conformations which are on average more compact are attained. The latter are in accordance with the fluorescence resonance energy transfer experiment results of other workers. The key events leading to the conformational change from the open to the compact conformation are (i) formation of a salt bridge between the N-lobe and the linker, stabilizing their relative motions, (ii) bending of the C-lobe towards the N-lobe, leading to a lowering of the interaction energy between the two-lobes, (iii) formation of a hydrophobic patch between the two lobes, further stabilizing the bent conformation by reducing the entropic cost of the compact form, (iv) sharing of a Ca+2 ion between the two lobes
Classical, semiclassical, and quantum investigations of the 4-sphere scattering system
A genuinely three-dimensional system, viz. the hyperbolic 4-sphere scattering
system, is investigated with classical, semiclassical, and quantum mechanical
methods at various center-to-center separations of the spheres. The efficiency
and scaling properties of the computations are discussed by comparisons to the
two-dimensional 3-disk system. While in systems with few degrees of freedom
modern quantum calculations are, in general, numerically more efficient than
semiclassical methods, this situation can be reversed with increasing dimension
of the problem. For the 4-sphere system with large separations between the
spheres, we demonstrate the superiority of semiclassical versus quantum
calculations, i.e., semiclassical resonances can easily be obtained even in
energy regions which are unattainable with the currently available quantum
techniques. The 4-sphere system with touching spheres is a challenging problem
for both quantum and semiclassical techniques. Here, semiclassical resonances
are obtained via harmonic inversion of a cross-correlated periodic orbit
signal.Comment: 12 pages, 5 figures, submitted to Phys. Rev.
Modular logic gates: cascading independent logic gates via metal ion signals
Cataloged from PDF version of article.Abstract
Systematic cascading of molecular logic gates is an important issue to be addressed for advancing research in this field. We have demonstrated that photochemically triggered metal ion signals can be utilized towards that goal. Thus, independent logic gates were shown to work together while keeping their identity in more complex logic designs. Communication through the intermediacy of ion signals is clearly inspired from biological processes modulated by such signals, and implemented here with ion responsive molecules. © 2014 The Royal Society of Chemistry.
Influence of conformational fluctuations on enzymatic activity: modelling the functional motion of beta-secretase
Considerable insight into the functional activity of proteins and enzymes can
be obtained by studying the low-energy conformational distortions that the
biopolymer can sustain. We carry out the characterization of these large scale
structural changes for a protein of considerable pharmaceutical interest, the
human -secretase. Starting from the crystallographic structure of the
protein, we use the recently introduced beta-Gaussian model to identify, with
negligible computational expenditure, the most significant distortion occurring
in thermal equilibrium and the associated time scales. The application of this
strategy allows to gain considerable insight into the putative functional
movements and, furthermore, helps to identify a handful of key regions in the
protein which have an important mechanical influence on the enzymatic activity
despite being spatially distant from the active site. The results obtained
within the Gaussian model are validated through an extensive comparison against
an all-atom Molecular Dynamics simulation.Comment: To be published in a special issue of J. Phys.: Cond. Mat. (Bedlewo
Workshop
Near-IR-Triggered, Remote-Controlled Release of Metal Ions: A Novel Strategy for Caged Ions
Cataloged from PDF version of article.A ligand incorporating a dithioethenyl moiety is cleaved into fragments which have a lower metal-ion affinity upon irradiation with low-energy red/near-IR light. The cleavage is a result of singlet oxygen generation which occurs on excitation of the photosensitizer modules. The method has many tunable factors that could make it a satisfactory caging strategy for metal ions
Nonlinearity of Mechanochemical Motions in Motor Proteins
The assumption of linear response of protein molecules to thermal noise or
structural perturbations, such as ligand binding or detachment, is broadly used
in the studies of protein dynamics. Conformational motions in proteins are
traditionally analyzed in terms of normal modes and experimental data on
thermal fluctuations in such macromolecules is also usually interpreted in
terms of the excitation of normal modes. We have chosen two important protein
motors - myosin V and kinesin KIF1A - and performed numerical investigations of
their conformational relaxation properties within the coarse-grained elastic
network approximation. We have found that the linearity assumption is deficient
for ligand-induced conformational motions and can even be violated for
characteristic thermal fluctuations. The deficiency is particularly pronounced
in KIF1A where the normal mode description fails completely in describing
functional mechanochemical motions. These results indicate that important
assumptions of the theory of protein dynamics may need to be reconsidered.
Neither a single normal mode, nor a superposition of such modes yield an
approximation of strongly nonlinear dynamics.Comment: 10 pages, 6 figure
Resistance distance, information centrality, node vulnerability and vibrations in complex networks
We discuss three seemingly unrelated quantities that have been introduced in different fields of science for complex networks. The three quantities are the resistance distance, the information centrality and the node displacement. We first prove various relations among them. Then we focus on the node displacement, showing its usefulness as an index of node vulnerability.We argue that the node displacement has a better resolution as a measure of node vulnerability than the degree and the information centrality
MODE-TASK: Large-scale protein motion tools
Conventional analysis of molecular dynamics (MD) trajectories may not identify global motions of macromolecules. Normal Mode Analysis (NMA) and Principle Component Analysis (PCA) are two popular methods to quantify large-scale motions, and find the “essential motions”; and have been applied to problems such as drug resistant mutations (Nizami et al., 2016) and viral capsid expansion (Hsieh et al., 2016). MODE-TASK is an array of tools to analyse and compare protein dynamics obtained from MD simulations and/or coarse grained elastic network models. Users may perform standard PCA, kernel and incremental PCA (IPCA). Data reduction techniques (Multidimensional Scaling (MDS) and t-Distributed Stochastics Neighbor Embedding (t-SNE)) are implemented. Users may analyse normal modes by constructing elastic network models (ENMs) of a protein complex. A novel coarse graining approach extends its application to large biological assemblies
ATPase Subdomain IA Is a Mediator of Interdomain Allostery in Hsp70 Molecular Chaperones
The versatile functions of the heat shock protein 70 (Hsp70) family of molecular chaperones rely on allosteric interactions between their nucleotide-binding and substrate-binding domains, NBD and SBD. Understanding the mechanism of interdomain allostery is essential to rational design of Hsp70 modulators. Yet, despite significant progress in recent years, how the two Hsp70 domains regulate each other's activity remains elusive. Covariance data from experiments and computations emerged in recent years as valuable sources of information towards gaining insights into the molecular events that mediate allostery. In the present study, conservation and covariance properties derived from both sequence and structural dynamics data are integrated with results from Perturbation Response Scanning and in vivo functional assays, so as to establish the dynamical basis of interdomain signal transduction in Hsp70s. Our study highlights the critical roles of SBD residues D481 and T417 in mediating the coupled motions of the two domains, as well as that of G506 in enabling the movements of the α-helical lid with respect to the β-sandwich. It also draws attention to the distinctive role of the NBD subdomains: Subdomain IA acts as a key mediator of signal transduction between the ATP- and substrate-binding sites, this function being achieved by a cascade of interactions predominantly involving conserved residues such as V139, D148, R167 and K155. Subdomain IIA, on the other hand, is distinguished by strong coevolutionary signals (with the SBD) exhibited by a series of residues (D211, E217, L219, T383) implicated in DnaJ recognition. The occurrence of coevolving residues at the DnaJ recognition region parallels the behavior recently observed at the nucleotide-exchange-factor recognition region of subdomain IIB. These findings suggest that Hsp70 tends to adapt to co-chaperone recognition and activity via coevolving residues, whereas interdomain allostery, critical to chaperoning, is robustly enabled by conserved interactions. © 2014 General et al
- …
